Week 2 Friday

Set Theory

Due Monday Jan 25th

Practice in translating the definitions.

1)

Claim. Let f and g be functions. Then f = g if and only if dom(f) = dom(g) and f(x) = g(x) for all $x \in dom(f)$.

2)

Claim. Let *E* be an equivalence relation on *A*. The collection of equivalence classes $A/E = \{ [a]_E \mid a \in A \}$ forms a partition of *A*.

An equivalence relation and a partition essentially code the same sort of structure on a set.

3)

Definition. Let A be a set. Given a partition $P = \{P_i\}_{i \in I}$ of A, define a relation $E_P = \{ \langle a, b \rangle \mid a \in P_i \text{ and } b \in P_i \text{ for some } i \}$.

Claim. Let P be a partition of a set A. Then E_P is an equivalence relation.

4)

Claim. Let *E* be an equivalence relation on a set *A*. Using the notation from 2), we have that $E = E_{A/E}$.