Dartmouth College

Mathematics 81
Homework assigned Friday, January 17

1. Let $\zeta=e^{2 \pi i / 8}$ be a primitive eighth root of unity.
(a) Show that $\left(\zeta+\zeta^{-1}\right)^{2}=2$.
(b) Show that $\mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\zeta)$.
(c) Compute the degree $[\mathbb{Q}(\zeta): \mathbb{Q}(\sqrt{2})]$.
2. Let $m_{1}, m_{2}, \ldots, m_{t}$ be integers.
(a) Show that $\left[\mathbb{Q}\left(\sqrt{m_{1}}, \sqrt{m_{2}}, \ldots, \sqrt{m_{t}}\right): \mathbb{Q}\right] \leq 2^{t}$.
(b) Give an example to show the inequality can be strict, and justify by computing degrees.
(c) Now assume the the integers m_{i} are square-free and are coprime in pairs. Show that $\left[\mathbb{Q}\left(\sqrt{m_{1}}, \sqrt{m_{2}}, \ldots, \sqrt{m_{t}}\right): \mathbb{Q}\right]=2^{t}$. Hint: Induction on t. You proably want to work out the case $t=2$ carefully before trying the general argument.
