Dartmouth College

Mathematics 81

Homework assigned Friday, January 17

- 1. Let $\zeta = e^{2\pi i/8}$ be a primitive eighth root of unity.
 - (a) Show that $(\zeta + \zeta^{-1})^2 = 2$.
 - (b) Show that $\mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\zeta)$.
 - (c) Compute the degree $[\mathbb{Q}(\zeta) : \mathbb{Q}(\sqrt{2})].$
- 2. Let m_1, m_2, \ldots, m_t be integers.
 - (a) Show that $[\mathbb{Q}(\sqrt{m_1}, \sqrt{m_2}, \dots, \sqrt{m_t}) : \mathbb{Q}] \leq 2^t$.
 - (b) Give an example to show the inequality can be strict, and justify by computing degrees.
 - (c) Now assume the integers m_i are square-free and are coprime in pairs. Show that $[\mathbb{Q}(\sqrt{m_1}, \sqrt{m_2}, \dots, \sqrt{m_t}) : \mathbb{Q}] = 2^t$. Hint: Induction on t. You proably want to work out the case t = 2 carefully before trying the general argument.