
Math 75 notes, Lecture 25

P. Pollack and C. Pomerance

What about the integers?

In the last lecture we discussed some algorithmic problems for polynomials over finite fields.
We saw that it is easy (i.e., there is a ‘good algorithm’) to decide whether or not a polynomial
irreducible and to factor it into irreducibles if it isn’t. What about the analogous problems for
integers? How easy is it to decide whether a number is prime, and if it’s not, to break it up
into its prime factors?

There is an obvious naive algorithm; trial divide by all 2 ≤ d ≤
√
n. This is just as terrible

as the analogous algorithm for polynomials discussed in the last lecture, and for the same
reason: if n actually is prime, this requires about

√
n divisions, and even though each of these

divisions is fairly quick, their number is exponential in the length of the input (i.e., in log n).
So, just as before, getting to a good algorithm will require some cleverness. Once again, it

will be the theory of finite fields that comes to our aid.

Recognizing primes

According to Fermat’s little theorem, if n is prime and a is any integer coprime to n, then
we have the congruence

an−1 ≡ 1 (mod n). (1)

This is one of the basic facts about the finite field Fn that we have made repeated use of in this
course. In particular, if n is an odd prime, then 2n−1 ≡ 1 (mod n).

As an example, take n = 91. We can easily compute (by the repeated squaring algorithm)
that 290 ≡ 64 (mod 91). So 91 cannot be a prime! (In fact, as you may have already noticed,
91 = 7 · 13.) What is notable about the proof via Fermat’s little theorem is that it shows
91 composite without factoring it. Moreover, this Fermat’s-little-theorem test is quick: for
a general number n, the repeated squaring algorithm allows us to compute 2n−1 (mod n) in
about O(log n) steps. And each step is also fairly quick: we have only to multiply two numbers
< n and then reduce the answer modulo n, and both can be done with only O(log2 n) basic
steps. So given an odd number, it’s easy to test if 2n−1 ≡ 1 (mod n), and if it’s not, we have a
proof that n is composite.

This is all good as far as it goes, but it doesn’t go far enough. Take, say, n = 341. Then we
have 2340 ≡ 1 (mod 341), but 341 = 31 ·11 is composite. So just testing whether (1) holds with
a = 2 isn’t enough to weed out all composite numbers. Well, ok, so maybe it’s not enough to
just use a = 2; let’s also test if (1) holds with a = 3. In this case we find 3340 ≡ 56 (mod 341),
and this does prove that n = 341 is composite. So maybe if we test (1) for both a = 2 and
a = 3, no composite numbers slip by. It turns out this is false (e.g., n = 1105 slips past this
new combined test). Ok, well, what if we try a random approach: let’s just pick 1 < a < n at
random and test whether (1) holds. We might hope that even if the first few a’s are bad, most
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values of a will make (1) fail, and so we would have a good random algorithm for proving that
a given composite number really is composite.

It turns out that this doesn’t work. According to a result of Alford, Granville, and Pomer-
ance, there are infinitely many composite n for which (1) holds for every a coprime to n. (Such
n are called Carmichael numbers.) Nevertheless, this approach almost works. By inserting just
a few additional ideas into the mix, one can prove the following theorem:

Theorem 1. There is a good (in our technical sense) random algorithm which, given a compos-
ite integer n, either reports ‘composite’ or ‘failed to prove composite,’ and reports ‘composite’
at least 75% of the time (for any given composite input n).

Here is one such algorithm, which (in various guises) can be attributed to any of Miller,
Rabin, and Selfridge. Suppose that n is an odd prime and that a is an integer coprime to n.
Write n− 1 = 2kq, where k ≥ 1 and q is odd. It is easy to check that one has the factorization

an−1 − 1 = (aq − 1)(aq + 1)(a2q + 1) · · · (a2k−1q + 1).

(If you doubt this, just start multiplying out the right-hand product.) Since n is prime, Fermat’s
little theorem tells us that n divides an−1 − 1, and so n must divide one of the factors on the
right-hand side. So either

aq ≡ 1 (mod n) or, for some 0 ≤ j < k, a2jq ≡ −1 (mod n). (2)

Suppose now that n is composite. It can be shown (though we don’t do it here) that (2) fails
for at least 3/4 of all choices of 1 ≤ a < n, in accord with the statement of Theorem 1. Notice
that testing whether (2) holds is easy; we can compute aq (mod n) by our repeated squaring
method and then continue squaring the result modulo n to get a2q, a22q, etc.

So suppose you have an n that you suspect is prime. You can run it through this algorithm
with 50 random choices of a. If each time the algorithm fails to prove n composite, then either
n is prime or you’ve been very unlucky: you’ve witnessed an event of probability at most 1 in
450 = 2100. This is probably enough to convince you that n is prime, but it isn’t a proof.

Proving primality

Suppose we are morally certain n is prime, because repeated application of one of the
random algorithms alluded to above failed to prove n composite.

If we know the factorization of n − 1, it is not too hard to take the last step and prove n
prime:

Theorem 2 (Lucas). Suppose n − 1 is completely factored. Moreover, suppose that for the
integer a, we have

an−1 ≡ 1 (mod n),

but for every prime q dividing n− 1, we have

a(n−1)/q 6≡ 1 (mod n).

Then n is prime.
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Remark. Before we prove this, we should remark that if n is actually prime, then the conditions
on a in this theorem amount to requiring that a be a generator for the multiplicative group F×n .
We’ve seen in class that there are φ(n−1) generators of F×n , and in analytic number theory one
shows that φ(n− 1)/(n− 1) is not too small. Thus, choosing a at random from [1, n− 1], we’re
likely to stumble across an a that works before too long. (More precisely: it can be shown that
we don’t expect to have to make more than a constant multiple of log log n choices of a before
we find one that works. Note that log log n grows very slowly.)

Proof. Let l represent the order of a (mod n), i.e., the order of a in the group (Z/(n))×. From
the first congruence in the theorem, we see that l divides n−1. From the second (non)congruence
of the theorem, we know that for each prime q dividing n − 1, it’s not the case that l divides
(n − 1)/q. This is only possible (by unique factorization) if l = n − 1. But the order of any
element is at most the size of the ambient group. So there must be at least n − 1 units in
(Z/(n))×. This means that 1, 2, . . . , n− 1 must all be units in Z/(n). But then n is coprime to
all integers 1 ≤ d < n, which means that n is prime.

What if we only know part of the factorization of n− 1?

Theorem 3 (Pocklington). Suppose n − 1 = FR, where F is completely factored. Moreover,
suppose that for the integer a, we have

an−1 ≡ 1 (mod n), (3)

but for all primes q dividing F ,

gcd(a(n−1)/q − 1, n) = 1. (4)

Then every prime p dividing n satisfies p ≡ 1 (mod F ).

Proof. Let p be a prime dividing n. Since p divides n, we can read (3) modulo p to find that

(aR)F = aRF = an−1 ≡ 1 (mod p).

The equality (4) guarantees that for each prime q dividing F , we have

(aR)F/q = aRF/q = a(n−1)/q 6≡ 1 (mod p).

Reasoning as in the proof of Theorem 2, we see that aR has order F modulo p. But the order
of aR must divide p− 1. So p ≡ 1 (mod F ).

Suppose now that F ≥
√
n. (So we can factor a portion of n of length at least about half

the length of n.) Then Theorem 3, for the right choice of a, will prove that all of the prime
factors p of n satisfy p ≡ 1 (mod F ). But then p ≥ 1 + F >

√
n. So n only has prime factors

exceeding its square root, so it must be prime!
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We close with an application of Lucas’s Theorem 2. For k ≥ 0, define Fk = 22k
+ 1. (These

are called the Fermat numbers.) Thus F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537. All these
numbers happen to be prime, and Fermat conjectured that Fk is prime for every k. However,
Euler showed that

F5 = 641 · 6700417.

It is now known that Fk is composite for all 5 ≤ k ≤ 32, and it is widely conjectured that Fk

is in fact composite for every k ≥ 5.
How do we test if a large Fermat number is prime? Notice that these numbers get very

large very quickly, each being essentially the square of the previous. So we need an efficient
algorithm if we hope to get anywhere at all.

Theorem 4 (Pépin). For k ≥ 1, the number Fk is prime if and only if

3(Fk−1)/2 ≡ −1 (mod Fk).

Proof. Let k ≥ 1 and set n = Fk. Notice that q = 2 is the only prime dividing n− 1. We have
that 3(n−1)/2 ≡ −11 (mod n), so that 3n−1 ≡ (−1)2 ≡ 1 (mod n). This verifies the condition’s
of Theorem 2 for the integer a = 3, so that n is prime.

Suppose conversely that n is prime. It’s easy to prove (e.g., by induction on k) that for
k ≥ 1, we have n ≡ 5 (mod 12). But 3 is not a square modulo any prime from the residue
class 5 (mod 12). (This is a special case of the law of quadratic reciprocity from elementary
number theory.) Hence 3(n−1)/2 ≡ −1 (mod n), which is exactly the congruence of Pépin’s
theorem.
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