
Math 75 notes, Lecture 24

P. Pollack and C. Pomerance

A terrible algorithm

Suppose that f(x) ∈ Fp[x] has degree d and we wish to determine if f(x) is irreducible
or not. Here is an algorithm that works: Trial divide f(x) with every non-constant, monic
polynomial of degree at most d/2. This works, because if f(x) is reducible, an irreducible
factor of least degree must have degree ≤ d/2. The algorithm has a bonus since if f(x) is
reducible, the algorithm will find a nontrivial factorization of f(x).

So, why is it a terrible algorithm? The answer lies in the number of steps in the worst case.
If f is irreducible, the number of trial divisions attempted is

p+ p2 + · · ·+ pbd/2c,

since there are exactly pj monic polynomials of degree j. As a function of d, this expression
grows exponentially. Worse, the dependence on p is also nasty, even for fixed d. Indeed,
members of Fp are integers in the range [0, p− 1] and a number in this range can be described
by its digits, so a description of a number in this range has length proportional to log p, or
smaller. A “good” algorithm would have a bound for the number of steps that only involves
constant powers of log p.

So, we take this as our ideal of a good algorithm. The number of steps should be no more
than a fixed power of log p times a fixed power of d, the degree of the polynomial. So, the
perfectly legitimate trial division algorithm is indeed terrible, since it fails on both counts.

Some good algorithms

First note that ordinary arithmetic in Fp is fine. The naive algorithms that we know are
indeed good. For example, take addition. Two members of Fp have at most a constant times
log p digits, so adding them using elementary-school arithmetic takes at most a constant time
log p steps. If the answer is bigger than p, there is one final step of subtracting p, but the
elementary-school algorithm is just fine here too, so we can see that in all, no more than a
constant times log p steps are involved.

Not only is addition and subtraction good, but so too is multiplication. Here the usual “par-
allelogram” algorithm (named for the shape that the partial products form in the elementary-
school algorithm) takes at most a constant times (log p)2 steps. In Fp one has the additional
step of dividing by p and taking a remainder, but this too throws in no more than an additional
constant times (log p)2 steps.

In addition to addition, subtraction, and multiplication, we can ask about division in Fp.
This involves finding the multiplicative inverse, and then multiplying by that inverse. For
example, if you wish to divide by 5 in F17, this is the same as multiplying by 7, since 5 ·7 = 1 in
this field. And we have learned that finding the inverse involves the extended Euclid algorithm
for gcd. In particular, in following the extended gcd method for 5 and 17, one finds that

1



7 · 5 − 2 · 17 = 1, so that we can read off the inverse of 5. Now Euclid’s algorithm involves a
number of divisions with remainder, each of which is no problem, but we might be unhappy if
the number of them needed is huge. In fact, it is possible to show that the number of divisions
is bounded by a constant times the log of the smaller number. In particular, this tells us that
we have a good algorithm for computing inverses in Fp and so for doing dvision in this field.

We also have good algorithms for doing arithmetic in Fp[x]. Addition of two polynomials
of degree at most d takes at most a constant times d log p elementary steps, which fits into our
definition of good. Mutliplication, by the school method of multiplying polynomials, is also
good, the time being bounded by a constant times d2(log p)2. Moreover, gcd and extended gcd
is also a good algorithm, since the number of divisions is at most the smaller of the degrees of
the two polynomials involved.

Finally note that our latest trick of dealing with the formal derivative is no problem from
an algorithmic standpoint. Computing D(f) from f is also a good algorithm.

A good application

We can now use the above tools to write down a very simple algorithm that detects whether
a given polynomial is squarefree and gives a nontrivial factorization of it if it is not squarefree.
Here’s the algorithm: Given a polynomial f(x) in Fp[x] of degree at least 2, form G(x) =
gcd(f(x), D(f(x))). If G(x) = 1, then f(x) is squarefree. If the gcd is not 1, then f(x) is not
squarefree. Moreover, if 0 < degG(x) < deg f(x), then G(x) is a nontrivial factor of f(x).
And if degG(x) = deg f(x), then f(x) = u(xp) for some polynomial u(x) ∈ Fp[x], and so
f(x) = u(x)p.

We have already seen that these assertions are perfectly correct. The new thought now is
that it is easy to compute G(x), which is the key for detecting whether f(x) is squarefree. We
indeed have a good algorithm.

Making the terrible algorithm good

We saw above that individually trial dividing by every monic polynomial of degree j is a
terrible way to see if f(x) has an irreducible factor of degree j. Is there some way we can test
all of the degree j’s at the same time? Well yes, there is. Recall that the polynomial xpj − x is
the product of all of the irreducible polynomials in Fp[x] of degree dividing j. So, in particular,

if gcd(xpj − x, f(x)) = 1, then f(x) has no irreducible factors of degree dividing j.
This is very promising, because we have seen that Euclid has given us a good algorithm

for computing gcd. But there is a problem. To get the gcd started, it would seem we need to
divide f(x) into the polynomial xpj − x to get the first remainder. And the time for this would
seem to involve the degree of xpj − x, which is the exponentially large pj.

But there is a faster way of getting up to this high power. Suppose rj(x) is the remainder

when f(x) is divided into xpj
. Then we can build up to rj(x) one step at a time. We have

r1(x) = x (assuming that the degree of f(x) is at least 2). Then r2(x) is the remainder when
f(x) is divided into r1(x)p, and so one until we find that rj(x) is the remainder when f(x) is
divided into rj−1(x)p.

2



So, if p = 2, this is very easy. For example, to figure the remainder when f(x) is divided
into x2100

, there are just 100 squarings of polynomials of degree < deg f(x), followed by dividing
by f(x) to get the remainder.

If p = 3, it would be cubings, which can be done in two steps. How many steps to raise
to the 5th power? It can be done in 3 steps, by squaring twice and then multiplying by the
original. This idea scales nicely. Say you want to raise to the 101st power. Compute

r2(x) = r(x)2 mod f(x), r4(x) = r2(x)2 mod f(x), . . . , r64(x) = r32(x)2 mod f(x),

taking just 6 steps. Now write 101 in binary, it is 64 + 32 + 4 + 1, so we have

r96(x) = r64(x)r32(x) mod f(x),

r100(x) = r96(x)r4(x) mod f(x),

r101(x) = r100(x)r(x) mod f(x).

Thus, raising to the power 101, modulo a polynomial f(x) of degree d, can be done in 9
arithmetic steps with polynomials of degree < 2d.

In general this repeated squaring algorithm can raise to the pth power modulo f(x) in
at most a constant times log p arithmetic steps with polynomials of degree < 2d, where d =
deg f(x). So, it is a good algorithm. And so, the first step of the gcd: we can first find xpj

mod f(x), and then subtract x from this giving us the remainder when f(x) is divided into
xpj−x. Moreover, if we had previously dealt with xpj−1−x, then we would have had previously
the remainder rj−1(x) when f(x) is divided into xpj−1

, and so we can arrive at rj(x) without
starting from scratch, namely, rj(x) = rj−1(x)p mod f(x).

This is a good algorithm for irreducibility testing that has a bonus towards factoring. Say
you are given f(x) ∈ Fp[x] of degree d, and that f(x) is squarefree. Let f1(x) = gcd(xp−x, f(x)).
Let f2(x) = gcd(xp2 − x, f(x)/f1(x)), and continue finding fj(x) for j ≤ d/2. Here each fj(x)
is the product of the distinct irreducible factors of f(x) of degree j. If all of these polynomials
are 1, then f is irreducible. If any of these polynomials are not 1, then f is reducible, and we
know something about the degrees of the irreducible factors of f(x).

A final splitting

So, we can easily detect nonsquarefree polynomials, and split those that are not. We can
easily detect irreducible polynomials. And we can easily split squarefree polynomials that
have irreducible factors of different degrees. What’s left? The answer, polynomials that are
squarefree where all of the irreducible factors have the same degree.

Here’s an example. We know that 2 is a square in F103. Indeed, one way to know this is
by using the fact from elementary number theory that 2 is a square modulo the odd prime p
precisely when p is 1 or 7 mod 8. Another way to detect squares in a finite field of odd order
comes from the existence of a primitive element, as discussed on the last test. If β ∈ F×

pk , then

β is a square if and only if β(pk−1)/2 = 1. So we have a method contained in this course of
checking that 2 is a square in F103, namely checking that 251 ≡ 1 (mod 103).

3



Good, 2 is a square in F103. This implies that x2 − 2 ∈ F103[x] is reducible. So, factor it! It
would be the product of two degree 1’s, so it is in exactly the case described above, namely a
squarefree reducible polynomial where each irreducible factor has the same degree. That is, a
method of polynomial factorization would have the application then of finding square roots of
squares in Fp.

We now describe a general algorithm for factoring such a polynomial. It is a good algorithm,
but not in the sense of the algorithms discussed so far. What’s unusual about the algorithm is
that it involves random choices. In fact, we’ll see that the with a random choice being made, the
algorithm has a nice and small number of steps, but only a 50% shot at producing a nontrivial
factorization. So, the idea is to repeat the process, and we expect to get a random choice that
works sooner than later.

A random algorithm

We look first at the case that p is an odd prime. And to keep the description simple, we
suppose that our polynomial f(x) that we wish to factor is known to be the product of two
different monic irreducible polynomials of degree j. Say these two are h1(x), h2(x). Giving
them names does not necessarily mean that we know what they are; it is our task to find them.
Here is our algorithm: Randomly choose a polynomial g(x) of degree < 2j. Then

(i) Check if gcd(g(x), f(x)) is a nontrivial factor of f . If so, we’re done.

(ii) Check if gcd(g(x)(pj−1)/2 − 1, f(x)) is a nontrivial factor of f . If so, we’re done.

We claim that at least half of all possible choices of g(x) in this algorithm will uncover the
factorization of f(x).

Let’s see how often we succeed in step (i). As you’ll show in homework, we fail to uncover
a factorization in step (i) for exactly (pj − 1)2 choices of g, and so we succeed for

p2j − 1− (pj − 1)2 = 2pj − 2

choices. (Notice that deg gcd(g(x), f(x)) ≤ deg g(x) < 2j = deg f(x), so that either g(x) and
f(x) are coprime, or gcd(g(x), f(x)) is a nontrivial factor of f(x).) Ok, what about step (ii)?
This requires a more detailed analysis.

With an irreducible polynomial h(x) ∈ Fp[x] of degree j, we may construct the finite field
Fpj [x] in the usual way as Fp[x]/(h(x)). In particular, nonzero elements of Fpj are represented
by polynomials r(x) of degree < j, where r(x) actually is just the representative of the coset
r(x) + (h(x)). Now elements of F×

pj are either squares or not, with half of them squares and

half not (here’s where we use that p is odd). The criterion for an element β to be a square is
that β(pj−1)/2 = 1, while the criterion for being a nonsquare is that β(pj−1)/2 = −1.

It follows that with h(x) denoting either of the polynomials h1(x) or h2(x), precisely half of
all the polynomials r(x) of degree < j satisfy

r(x)
pj−1

2 ≡ 1 (mod h(x)), and the other half satisfy r(x)
pj−1

2 ≡ −1 (mod h(x)),

4



according as r(x) is or is not a square modulo h(x).
We have two realizations of Fpj , one via h1(x), the other via h2(x). We choose polynomials

r1(x), r2(x) both of degree < d so that r1(x) is a square modulo h1(x), but r2(x) is not a square
modulo h2(x), or vice versa. The number of ways of choosing r1(x), r2(x) like this is precisely

pj − 1

2

pj − 1

2
+
pj − 1

2

pj − 1

2
=

1

2
(pj − 1)2.

We now construct a polynomial g(x) of degree < 2j satisfying

g(x) ≡ r1(x) (mod h1(x)) and g(x) ≡ r2(x) (mod h2(x)).

Since h1(x), h2(x) are relatively prime in Fp[x], there are polynomials v1(x), v2(x) with

v1(x)h1(x) + v2(x)h2(x) = 1.

Consider the polynomial

w(x) = r2(x)v1(x)h1(x) + r1(x)v2(x)h2(x)

and notice that

w(x) ≡ r1(x) (mod h1(x)) and w(x) ≡ r2(x) (mod h2(x)).

If we reduce w(x) modulo h1(x)h2(x) it will have degree < 2j and will still satisfy the same
two congruences. This reduced polynomial is our g(x).

We claim that all of the 1
2
(pj − 1)2 polynomials g(x) constructed this way succeed in step

(ii) of our algorithm in factoring f . For example, suppose that r1(x) is a square modulo h1(x)
and r2(x) a nonsquare modulo h2(x). Then

g(x)
pj−1

2 ≡ r1(x)
pj−1

2 ≡ 1 (mod h1(x)) while g(x)
pj−1

2 ≡ r2(x)
pj−1

2 ≡ −1 (mod h1(x)).

It follows that
gcd(g(x)(pj−1)/2 − 1, f(x)) = h1(x).

If instead r1(x) is a nonsquare modulo h1(x) but r2(x) is a square modulo h2(x), then this gcd
will pick out the factor h2(x).

So the number of choices of g(x) of degree < 2j for which out algorithm succeeds in splitting
f is at least

2pj − 2 +
1

2
(pj − 1)2,

and it is a simple exercise in inequalities to show that this is at least half the total number of
polynomials of degree < 2j (i.e., at least 1

2
(p2j − 1)).

5



An example

Let us illustrate this algorithm for the polynomial f(x) = x2 + 2 in F17[x]. Say we have
already discovered that x2 + 2 is not irreducible. This is not so hard and can be seen mentally
as follows. First, it is clearly squarefree, since it is coprime to its derivative 2x. Next, (−2)4 =
16 = −1 in F17, so (−2)8 = 1, which shows that −2 is a square. Thus, x2 + 2 is reducible,
it can be factored as a difference of two squares. To do this though, we would need to find a
squareroot of −2. We’re in the case of j = 1 in the above discussion, so let’s choose a random
monic polynomial g(x) of degree < 2j = 2. OK, say g(x) = x − 5. We need to compute
(x− 5)8 mod f(x). First, we have

(x− 5)2 = x2 − 10x+ 25 = −2− 10x+ 25 = 7x+ 6.

Next, we have

(x− 5)4 = (7x+ 6)2 = 49x2 + 84x+ 36 = −2x2 − x+ 2 = −x+ 6.

And then we have

(x− 5)8 = (−x+ 6)2 = x2 − 12x+ 36 = −12x = 5x.

So we need to check the gcd of 5x−1 and f(x) = x2 +2. It’s easier to do this if we make 5x−1
monic, and this entails multiplying it by 5−1 = 7. So we need to check gcd(x− 7, x2 + 2). But
x− 7 is a divisor, and we find that

x2 + 2 = (x− 7)(x+ 7).

We also find that the squareroots of −2 are ±7.

What to do when p = 2

What made the above idea work is the factorization

xpj − x = x
(
x(pj−1)/2 − 1

) (
x(pj−1)/2 + 1

)
,

which strongly uses that p is odd. However there is an alternate factorization when p = 2. Let

T (x) = x+ x2 + · · ·+ x2j−1

.

Note that
T (x)2 = x2 + x4 + · · ·+ x2j

,

so that
T (x)2 + T (x) = x+ x2j

.

That is, we have the factorization

x2j − x = x2j

+ x = T (x)(T (x) + 1).

6



This leads to a factorization algorithm as follows. Take g(x) at random of degree < 2j. Then
compute gcd(T (g(x)), f(x)). If f is squarefree, reducible, and with all irreducible factors of
degree j, then this gcd will be a nontrivial factor of f(x) with probability at least 1/2.

Much of the above material is taken from The art of computer programming, volume 2, Seminu-
merical algorithms, by Donald Knuth.

7


