
Math 75 notes, Lecture 23

P. Pollack and C. Pomerance

A little review
Last time we introduced the formal derivative of a polynomial: If F is a field and f(x) =∑d

i=0 aix
i ∈ F [x], we put

D(f(x)) =
d∑

i=1

iaix
i−1.

We saw that with this definition, we have number of results familiar from calculus. For example,
the formal derivative is an F -linear map from F [x] to F [x] and satisfies the product rule,

D(fg) = fD(g) + gD(f).

Moreover, we completely characterized those polynomials f for which D(f) = 0: Of course
constant polynomials always have derivative zero, but we saw that if F has characteristic p
then there are infinitely many more examples; in that case, the polynomials with derivative
zero are exactly the polynomials of the form u(xp), where u(x) ∈ F [x]. Our last theorem from
last time gave us our first application of the derivative: if F is a finite field, then f and D(f)
are relatively prime exactly when f is squarefree.

Here we present a different application of the formal derivative, one which has a very different
flavor. We use it to attack a polynomial version of the (in)famous problem known as Fermat’s
Last Theorem.

Fermat’s last theorem for polynomials
Let’s recall the statement of Fermat’s last theorem. That theorem concerns solutions to the

equation xn + yn = zn. When n = 2, the positive integer solutions to this equation are known
as Pythagorean triples, and as you probably learned long before you got to Dartmouth, these
solutions exactly describe the possible sides of right triangles. What about when n > 2? In this
case there are still solutions, but none very satisfying; e.g., we can take x = 0 and set y = z,
but that is hardly interesting. Fermat’s last theorem says that if we want non-boring solutions
we are out of luck: if n ≥ 3, then xn + yn = zn has no solutions in nonzero integers x, y, z.

What if we look at the same equation xn + yn = zn, but instead of asking for integer
solutions, we ask for polynomial solutions. In that case we are led to the following theorem:

Theorem 1. Let F be a field of characteristic 0 and let n ≥ 3 be an integer. Suppose that f, g,
and h are three nonzero polynomials in F [x] satisfying fn + gn = hn, and that f, g, and h are
relatively prime, i.e., there is no irreducible polynomial p(x) dividing all three of f, g, and h.
Then f, g, and h are constant.

The restriction to fields of characteristic 0 leaves out finite fields, which have been the main
object of study in this course. But as you’ll see in your homework, one can prove a (slightly
more complicated) version of the same theorem over these fields. Also, it is not a significant
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restriction to insist that f, g, and h are coprime, since we can always reduce to this case;
indeed, if fn + gn = hn, and d is the monic polynomial of largest degree dividing f, g, and h,
then (f/d)n + (g/d)n = (h/d)n, and now f/d, g/d, and h/d are coprime.

You should think of Theorem 1 as, morally, making the same sort of claim as the usual
Fermat’s Last Theorem; both say that there are no ‘interesting’ solutions to xn +yn = zn when
n ≥ 3. In the polynomial version, the class of ‘uninteresting’ solutions is a bit larger though,
and includes not only the cases when one of the three summands is zero, but also the case when
all three are constant. For example, when n = 3 and F = C, there is nothing at all exciting or
surprising about the solution

13 + 13 = (
3
√

2)3.

Finally, notice that just as in the integer case, it is essential that we require n ≥ 3 here:
There are many ‘interesting’ solutions to f 2 + g2 = h2. In fact, if a(x) is any polynomial in
F [x], then it is easily checked that

(a(x)2 − 1)2 + (2a(x))2 = (a(x) + 1)2.

Despite the surface similarities between Fermat’s last theorem and our polynomial analogue,
there is a profound disparity in the difficulty of their proofs. Fermat’s last theorem resisted
attack for hundreds of years before finally being dispensed with (in the mid 90s) by Andrew
Wiles. The proof spans hundreds of pages and uses some of the most sophisticated tools of
modern number theory.

By contrast, the proof of the polynomial Fermat’s last theorem was known already to 19th
century mathematicians. Here we describe a simple, modern proof.

Mason’s theorem
Our main tool is an inequality due to Mason. To state his theorem we need a preliminary

definition. Let F be a field and let f be a nonzero polynomial over F . We define

R(f) =
∏
p|f

p,

where the product runs over the monic irreducibles p(x) which divide f . (This is called the
radical of f .) Concretely, if the unique factorization of f has the form upe1

1 · · · per
r (where u is

a unit and the pi are distinct monic irreducibles), then R(f) = p1 · · · pr. In words, R(f) is the
monic, squarefree divisor of f of largest degree.

Theorem 2 (Mason’s theorem). Let F be any field. Suppose f, g, h ∈ F [x] are nonzero and
that f, g, and h are coprime, i.e., that there is no irreducible dividing all of f , g, and h. If f, g,
and h satisfy the equation f + g = h, then either D(f) = D(g) = D(h) = 0, or

max{deg f, deg g, deg h} ≤ deg R(fgh)− 1.
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Remark. The hypothesis that no prime divides all three of f, g, and h is equivalent to the
hypothesis that gcd(f, g) = gcd(f, h) = gcd(g, h) = 1; this is because f + g = h, so that any
prime dividing two of f and g necessarily divides the third. We’ll use this a priori stronger-
seeming hypothesis in our argument below.

The proof of Theorem 2 we give here is due to N. Snyder and was discovered while he was
a high school student! We begin with an easy lemma:

Lemma 1. Let f be a nonzero polynomial in F [x]. Then f/ gcd(f, D(f)) divides R(f). As a
consequence,

deg gcd(f, D(f)) ≥ deg f − deg R(f).

Proof. Write out the unique factorization of f as f = upe1
1 · · · per

r , so that R(f) = p1 · · · pr.
For each 1 ≤ i ≤ r, we can write f = pei

i qi (where qi just collects all the other terms in the
factorization) and apply the product rule to obtain that

D(f) = pei
i D(qi) + qiD(pei

i )

= pei
i D(qi) + qieip

ei−1
i D(pi)

= pei−1
i (piD(qi) + eiqiD(pi)).

So pei−1
i divides both D(f) and f , and so must divide gcd(f, D(f)). Since pei

i is the highest
power of pi dividing f , the pi-part of the gcd of f and D(f) is either pei−1

i or pei
i . This implies

that
f/ gcd(f, D(f)) | up1 · · · pr = uR(f).

Since u is a unit, we must also have f/ gcd(f, D(f)) dividing R(f).
The final claim of the lemma follows immediately: We use the general rule that if a | b and

b 6= 0, then the degree of a is bounded by the degree of b. In our case, we get that

deg (f/ gcd(f, D(f))) ≤ deg R(f).

But the degree of the left hand side is just the difference of the degrees of the numerator and
denominator. Writing that out and rearranging gives the last claim.

Proof of Theorem 2. We start with the equation f + g = h and differentiate to obtain D(f) +
D(g) = D(h). Multiplying the first of these equations by D(g) and the second by g, and
subtracting the second from the first, we find

fD(g)− gD(f) = hD(g)−D(h)g.

This equality will be useful momentarily.
For now, observe that since gcd(f, D(f)) divides f and D(f), it must be that gcd(f, D(f)) di-

vides fD(g)−gD(f). Similarly, gcd(g,D(g)) also divides fD(g)−gD(f). Finally, gcd(h, D(h))
also divides fD(g)− gD(f), because fD(g)− gD(f) = hD(g)−D(h)g. Since any two of f, g,
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and h are relatively prime, any two of gcd(f, D(f)), gcd(g,D(g)), and gcd(h, D(h)) are also
relatively prime, and so (by unique factorization) we have

gcd(f, D(f)) gcd(g, D(g)) gcd(h, D(h)) | fD(g)− gD(f). (1)

We will soon use this divisibility relation to compare the degrees of the right and left-hand
sides, but before we can do this, we need to know that the right-hand side is nonzero (so that
it has a degree).

Suppose, on the contrary, that the right-hand side vanishes. Then fD(g) = gD(f), and so
f divides gD(f). Since f and g are coprime, it follows that f divides D(f). But this is only
possible if D(f) = 0. The same argument shows that in this case D(g) = 0. But we already
remarked above that D(f) + D(g) = D(h), so we have D(f) = D(g) = D(h) = 0, which is one
of the possibilities allowed for in our statement of Mason’s theorem.

So we can assume that fD(g)− gD(f) is nonzero. Then we are justified in saying that the
degree of the left-hand side of (1) is at most the degree of the right-hand side of (1). From
the definition of the derivative, it’s easy to get an upper bound on the degree of the right-hand
side; we have

deg (fD(g)− gD(f)) ≤ deg f + deg g − 1.

Lemma 1 gives us a lower bound on the left-hand side. Breaking up the degree of the product
as the sum of the degrees, we see the left-hand side of (1) ist at least

deg f + deg g + deg h− deg R(f)− deg R(g)− deg R(h).

Combining this with the upper bound found above and rearranging, we get

deg h ≤ deg R(f) + deg R(g) + deg R(h)− 1

= deg R(f)R(g)R(h)− 1 = deg R(fgh)− 1.

(We have that R(fgh) = R(f)R(g)R(h), since no two of f, g, and h share an irreducible factor.)
So we’ve proved 1/3 of what we wanted to prove; we’ve shown that deg h is bounded by the

right-hand expression in Mason’s theorem, and we need to do the same for deg f and deg g.
But this follows immediately if we apply what we’ve already proved not to f + g = h, but to
the equivalent rearranged equations h + (−f) = g and h + (−g) = f .

Back to Fermat’s last theorem
Let’s now prove Fermat’s last theorem for polynomials. So suppose n ≥ 3, and that f, g, and

h are nonzero polynomials over F (now assumed to be of characteristic zero) with fn +gn = hn,
and with no irreducible dividing all three of f, g, and h. We have to show that all of f, g, and
h are constant.

Mason’s theorem gives us only two options, either D(fn) = D(gn) = D(hn) = 0, or

max{deg fn, deg gn, deg hn} ≤ deg R(fngnhn)− 1. (2)
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Since F has characteristic zero, in the first case fn, gn, and hn are all constant polynomials.
But then f, g, and h must also all be constant, as we wanted to show.

Let’s show that the second option leads to a contradiction. First notice we can easily bound
the right-hand side of (2) from above. Since the radical of a polynomial depends only on the
irreducibles dividing the polynomial and not the exponents to which they occur,

R(fngnhn) = R(fgh).

But R(fgh) divides fgh, and so an upper bound for the right hand side of (2) is

deg f + deg g + deg h− 1. (3)

Now we obtain a contradictory lower bound for the left-hand side of (2). Since the maximum
of any three numbers is at least their average, the left hand side of (2) is at least

deg fn + deg gn + deg hn

3
=

n

3
(deg f + deg g + deg h) ≥ deg f + deg g + deg h,

since n ≥ 3, contradicting (3).

What about the integers?
Ok, that wasn’t trivial, but it wasn’t hundreds of pages of work either. So it seems worth-

while to ask if there is an analogue of Mason’s theorem for integers; this then might lead to a
much shorter proof of Fermat’s last theorem than the one currently known.

The answer seems to be ‘yes and no.’ Yes, there is an analogous statement for integers,
known as the ‘abc conjecture,’ and this statement does indeed have many marvelous conse-
quences (including a proof of Fermat’s last theorem for all sufficiently large exponents). But
no, it isn’t a theorem! In fact, there does not currently appear to be a plan on the mathematical
table that has much hope of settling it. Note that the argument we gave above for Mason’s
theorem fails to even get off the ground, as it relies heavily on the properties of the formal
derivative, and no such tool is available for studying integer arithmetic.
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