Math 75 notes, Lecture 21 outline

P. Pollack and C. Pomerance

References below are to Pretzel's Error-correcting codes and finite fields.
Define

$$
V(q, n, t):=\binom{n}{0}(q-1)^{0}+\binom{n}{1}(q-1)^{1}+\cdots+\binom{n}{t}(q-1)^{t} .
$$

- We proved the Hamming bound (p. 289): If C is a code of length n on an alphabet A of size q, and $d(C)>2 r$, then $|C| \leq q^{n} / V(q, n, r)$. Equality holds exactly for r-perfect codes.
- We proved the Singleton bound (p. 290): If C is a linear code over \mathbb{F}_{q} of length n and rank m, then $m \leq n-d(C)+1$. Equality holds for MDS codes, such as the Reed-Solomon codes $\operatorname{RS}(k, t)$.
- We proved the Gilbert-Varshamov bound (Theorem, §18.5): If A is an alphabet of size q, then there is a code of length n over A with minimum distance $\geq d$ and $|C| \geq$ $q^{n} / V(q, n, d-1)$.
- We showed that the Gilbert-Varshamov bound remains true for linear codes (Theorem, §18.6): There is a linear code over \mathbb{F}_{q} of length n and distance $\geq d$ with $|C| \geq$ $q^{n} / V(q, n, d-1)$.
- We defined the relative minimum distance $\delta(C)$ of a block code C (p.293) as m / n, where m is the length of a real word and n is the block length.
- We defined a bad family of codes as one with the following property: It is impossible to choose an $\epsilon>0$ and an infinite subcollection of codes from the family with the rate and minimum distance both at least ϵ for every code in the subcollection. (This is a somewhat more inclusive definition than the one given in the book on p. 294.) We saw that the Hamming codes form a bad family, and we stated (but did not prove) that the codes $\mathrm{BCH}(k, t)$ also form a bad family.
- We used the Gilbert-Varshamov bound for linear codes to produce a family of codes that is not bad. To do this, we fixed a positive $\delta<1 / 2$ and chose the largest binary code of length n with minimum distance $\geq d=\lceil\delta n\rceil$. Clearly each code constructed in this way has minimum relative distance $\geq \delta$. Assuming the book's estimate for $V(q ; n, d-1)$ (Lemma, p. 294), we showed that the rate of these code does not tend to zero with n; in fact,

$$
\lim \inf m / n \geq 1-H(\delta)>0,
$$

where

$$
H(\delta)=-\delta \log _{2} \delta-(1-\delta) \log _{2}(1-\delta)
$$

So the collection of these codes (with lengths $n=1,2,3, \ldots$) is not a bad family.

