
Math 75 notes, Lecture 20 outline

P. Pollack and C. Pomerance

References below are to Pretzel’s Error-correcting codes and finite fields:

• We reviewed the definition of a polynomial code and the left-shift criterion for recognizing
one.

• We reviewed the definiton of a cyclic code and showed that this could be defined alter-
natively as (1) a polynomial code of block length n with generator polynomial g(x) that
divides xn − 1; (2) a linear code closed under all left shifts.

• We went over an example where we have a length 15 binary code of dimension 7, with
real word (a6, . . . , a0) encoded as

(a6, . . . , a0, 0, a6, . . . , a0).

This is clearly a linear code. It is closed under left shift if the leading entry is 0, so it is a
polynomial code. The generator polynomial corresponds to the nonzero code word that
starts with the most 0’s, so it is

(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1),

which corresponds to x8 + 1 = x8 − 1. Since x8 − 1 ∤ x15 − 1 we see the code is not cyclic.
Alternatively, the left shift of code word

(1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0),

is seen not to be a code word. (See the example of code K on pp. 226–228.)

• We showed how to write down the generator matrix with standard encoding for the
polynomial code of block length n and generator polynomial g(x). Recall that standard
encoding of a real word (am−1, . . . , a0) is to identify this with the polynomial a(x) =
am−1x

m−1 + · · · + a0, and form the code word g(x)a(x). (Here the relation of n, m, d =
deg(g(x)) is that n = m + d.) The generator matrix corresponding to this encoding is
n × m where the jth column for j = 1, . . . , m is j − 1 0’s, followed by the column vector
gd, . . . , g0 (the coefficients of the polynomial g(x)), followed by n − d − j 0’s. (This may
not be in the book.)

• There is another way to encode real words with a polynomial code provided m ≤ n/2.
This is called systematic encoding and it goes like this: Divide g(x) into a(x)xn−m and find
the remainder r(x). Then real word a(x) encodes as a(x)xn−m − r(x). The advantage
of this encoder is that decoding (when there are no errors) is instantaneous—the top
m coefficients of the code word are identical to the real word a(x). There is a matrix
formulation for systematic encoding; to find it, encode the standard basis vectors of real-
word space, and put these as columns of a matrix.

1



• We reviewed the BCH code as a polynomial code. If α is a primitive element of F2k

(it’s multiplicative order is 2k − 1), let pi(x) be the minimum polynomial for αi over F2.
Then the generator polynomial is the product of the distinct pi(x) for i = 1, . . . , 2t. Since
p2i(x) = pi(x), one need only consider odd values of i.

• The following claim was made in class: When 2t < n = 2k − 1, the polynomials p1(x),
p3(x), . . . , p2t−1(x) are all distinct, and so the generator polynomial g(x) is their product.

In fact this claim is not true, sorry about that! Here’s a counterexample: Consider
BCH(7, 9) and consider p9(x) and p17(x). We have the general principle for polynomials
over F2 that if β is a root, then so too is β2, β4, β8, etc. Well β = α9 is a root of p9(x), so
β16 = α144 is a root as well. But in F27 , the primitive element α has multiplicative order
27 − 1 = 127, so α144 = α17. Thus, p17(x) = p9(x).

• So, there can be repeats among the pi(x), but these are not repeated in the generator
polynomial g(x) for BCK(k, t). It can be shown that there are no other repeats than
the one listed above for BCH(7, 9), so the generator polynomial is p1(x)p3(x) . . . p15(x).
Further, these all have degree 7 (do you know why?), so g(x) has degree 56.

• Here is a corrected version of the claim from class. In code BCH(k, t), if p2i−1(x) =
p2j−1(x) with i < j, then we must have (2i − 1)(2j − 1) > 2k. In particular, if 2t ≤ 2k/2,
then the polynomials p2i−1(x) are distinct for i ≤ t. Can you prove this?

• The main point of all of this is that the individual polynomials p2i−1(x) all divide x2k

−x,
so they all divide x2

k
−1 − 1 (assuming that k ≥ 2), and so their least common multiple

g(x) also divides x2k
−1 − 1. Thus, the code BCH(k, t) is cylcic.

• We briefly went into Reed–Solomon codes. Here, we take the same matrix Vk,t as for the
BCH(k, t) code, and consider it’s nullspace in Fn

2k (as opposed to Fn
2
). See Ch. 17, where

we covered briefly the first few sections. We noted that Reed–Solomon codes are good
for handling “bursts” of single bit errors, since each vector coordinate in a code word has
itself k bits, so if there are many bit-errors all occuring in a narrow interval, they will
involve only a few coordinates of the code, and so will be correctable if the number of
coordinates affected is ≤ t.

2


