Math 75 notes, Lecture 20 outline

P. Pollack and C. Pomerance

References below are to Pretzel's Error-correcting codes and finite fields:

- We reviewed the definition of a polynomial code and the left-shift criterion for recognizing one.
- We reviewed the definiton of a cyclic code and showed that this could be defined alternatively as (1) a polynomial code of block length n with generator polynomial $g(x)$ that divides $x^{n}-1 ;(2)$ a linear code closed under all left shifts.
- We went over an example where we have a length 15 binary code of dimension 7 , with real word $\left(a_{6}, \ldots, a_{0}\right)$ encoded as

$$
\left(a_{6}, \ldots, a_{0}, 0, a_{6}, \ldots, a_{0}\right)
$$

This is clearly a linear code. It is closed under left shift if the leading entry is 0 , so it is a polynomial code. The generator polynomial corresponds to the nonzero code word that starts with the most 0's, so it is

$$
(0,0,0,0,0,0,1,0,0,0,0,0,0,0,1)
$$

which corresponds to $x^{8}+1=x^{8}-1$. Since $x^{8}-1 \nmid x^{15}-1$ we see the code is not cyclic. Alternatively, the left shift of code word

$$
(1,0,0,0,0,0,0,0,1,0,0,0,0,0,0)
$$

is seen not to be a code word. (See the example of code K on pp. 226-228.)

- We showed how to write down the generator matrix with standard encoding for the polynomial code of block length n and generator polynomial $g(x)$. Recall that standard encoding of a real word $\left(a_{m-1}, \ldots, a_{0}\right)$ is to identify this with the polynomial $a(x)=$ $a_{m-1} x^{m-1}+\cdots+a_{0}$, and form the code word $g(x) a(x)$. (Here the relation of $n, m, d=$ $\operatorname{deg}(g(x))$ is that $n=m+d$.) The generator matrix corresponding to this encoding is $n \times m$ where the j th column for $j=1, \ldots, m$ is $j-10$'s, followed by the column vector g_{d}, \ldots, g_{0} (the coefficients of the polynomial $g(x)$), followed by $n-d-j 0$'s. (This may not be in the book.)
- There is another way to encode real words with a polynomial code provided $m \leq n / 2$. This is called systematic encoding and it goes like this: Divide $g(x)$ into $a(x) x^{n-m}$ and find the remainder $r(x)$. Then real word $a(x)$ encodes as $a(x) x^{n-m}-r(x)$. The advantage of this encoder is that decoding (when there are no errors) is instantaneous - the top m coefficients of the code word are identical to the real word $a(x)$. There is a matrix formulation for systematic encoding; to find it, encode the standard basis vectors of realword space, and put these as columns of a matrix.
- We reviewed the BCH code as a polynomial code. If α is a primitive element of $\mathbb{F}_{2^{k}}$ (it's multiplicative order is $2^{k}-1$), let $p_{i}(x)$ be the minimum polynomial for α^{i} over \mathbb{F}_{2}. Then the generator polynomial is the product of the distinct $p_{i}(x)$ for $i=1, \ldots, 2 t$. Since $p_{2 i}(x)=p_{i}(x)$, one need only consider odd values of i.
- The following claim was made in class: When $2 t<n=2^{k}-1$, the polynomials $p_{1}(x)$, $p_{3}(x), \ldots, p_{2 t-1}(x)$ are all distinct, and so the generator polynomial $g(x)$ is their product. In fact this claim is not true, sorry about that! Here's a counterexample: Consider $\operatorname{BCH}(7,9)$ and consider $p_{9}(x)$ and $p_{17}(x)$. We have the general principle for polynomials over \mathbb{F}_{2} that if β is a root, then so too is $\beta^{2}, \beta^{4}, \beta^{8}$, etc. Well $\beta=\alpha^{9}$ is a root of $p_{9}(x)$, so $\beta^{16}=\alpha^{144}$ is a root as well. But in $\mathbb{F}_{2^{7}}$, the primitive element α has multiplicative order $2^{7}-1=127$, so $\alpha^{144}=\alpha^{17}$. Thus, $p_{17}(x)=p_{9}(x)$.
- So, there can be repeats among the $p_{i}(x)$, but these are not repeated in the generator polynomial $g(x)$ for $\operatorname{BCK}(k, t)$. It can be shown that there are no other repeats than the one listed above for $\operatorname{BCH}(7,9)$, so the generator polynomial is $p_{1}(x) p_{3}(x) \ldots p_{15}(x)$. Further, these all have degree 7 (do you know why?), so $g(x)$ has degree 56 .
- Here is a corrected version of the claim from class. In code $\mathrm{BCH}(k, t)$, if $p_{2 i-1}(x)=$ $p_{2 j-1}(x)$ with $i<j$, then we must have $(2 i-1)(2 j-1)>2^{k}$. In particular, if $2 t \leq 2^{k / 2}$, then the polynomials $p_{2 i-1}(x)$ are distinct for $i \leq t$. Can you prove this?
- The main point of all of this is that the individual polynomials $p_{2 i-1}(x)$ all divide $x^{2^{k}}-x$, so they all divide $x^{2^{k}-1}-1$ (assuming that $k \geq 2$), and so their least common multiple $g(x)$ also divides $x^{2^{k}-1}-1$. Thus, the code $\mathrm{BCH}(k, t)$ is cylcic.
- We briefly went into Reed-Solomon codes. Here, we take the same matrix $V_{k, t}$ as for the $\mathrm{BCH}(k, t)$ code, and consider it's nullspace in $\mathbb{F}_{2^{k}}^{n}$ (as opposed to $\left.\mathbb{F}_{2}^{n}\right)$. See Ch. 17, where we covered briefly the first few sections. We noted that Reed-Solomon codes are good for handling "bursts" of single bit errors, since each vector coordinate in a code word has itself k bits, so if there are many bit-errors all occuring in a narrow interval, they will involve only a few coordinates of the code, and so will be correctable if the number of coordinates affected is $\leq t$.

