Math 75 notes, Lecture 19 outline

P. Pollack and C. Pomerance

References below are to Pretzel's Error-correcting codes and finite fields:

- We reviewed the characterization of $\operatorname{BCH}(k, t)$ derived in Lecture 18: Let α be a generator for $\mathbb{F}_{2^{k}}^{\times}$. Identify a word $u=\left(u_{n-1}, \ldots, u_{1}, u_{0}\right) \in \mathbb{F}_{2}^{n}$ with the polynomial $u(x)=$ $u_{n-1} x^{n-1}+\cdots+u_{1} x+u_{0}$. (This is a one-to-one correspondence between the words u of length n and the polynomials of degree $\leq n-1$ over \mathbb{F}_{2}, together with the zero polynomial.) Then $u(x)$ is a code word exactly when $g(x)$ divides $u(x)$, where $g(x)$ is the product of the distinct minimal polynomials of $\alpha, \alpha^{2}, \ldots, \alpha^{2 t}$.
- We reviewed one consequence for the rank m of $\operatorname{BCH}(k, t)$: we have $m=n-\operatorname{deg} g(x)$.
- We reviewed that encoding can be done easily, and amounts to multiplying by $g(x)$. (This is only one encoding scheme, called multiplicative encoding; the book also discusses systematic encoding, which we didn't get to.)
- We showed that $g(x)$ divides $x^{n}-1$. (Thus, in the terminology introduced below, each of the BCH codes is cyclic.) The quotient $\left(x^{n}-1\right) / g(x)$ was denoted $h(x)$, and called the check polynomial (see p. 222). We saw that $h(x)$ could be used for recognizing code words and decoding (see p. 223).
- As a generalization of the above situation, we introduced polynomial codes: codes C of length n where the code words are exactly the polynomials of degree $<n$ (or identically zero) divisible by a prescribed generator polynomial $g(x)$ of degree $<n$. We proved that the generator polynomial $g(x)$ of a polynomial code is unique up to multiplication by a nonzero element of the field, and that for any polynomial code C, we have $m=$ $n-\operatorname{deg} g(x)$. (Here, as usual, m is the rank of the code). (See p. 226.)
- We defined a cyclic code as a polynomial code for which the generator $g(x)$ divides $x^{n}-1$ (p. 228). As above, the quotient $\left(x^{n}-1\right) / g(x)$ is called the check polynomial of the code.
- We noted that for any polynomial code, encoding can be done exactly as above, by multiplying by $g(x)$. Similarly, for any cyclic code, one can recognize code words and decode using the check polynomial.
- We proved that a linear code C of dimension ≥ 1 is a polynomial code exactly when it is closed under left shifts of code words with first coordinate zero. (For the definition of a left shift, see p. 227.) We also stated, but did not have time to prove, that a code C is cyclic exactly when it is closed under all left shifts. (See the Theorems on pages 227, 229.)

