Math 75 notes, Lecture 18 outline

P. Pollack and C. Pomerance

References below are to Pretzel's Error-correcting codes and finite fields:

- We reviewed material from Lecture 17 and also Lecture 11. In particular we discussed how to find a generator element in a finite field and illustrated this for the finite field $\mathbb{F}_{2^{4}}$.
- The new material we covered was in Ch. 14, sections 14.1 through 14.4.
- In particular we learned how to think of a vector in $\mathbb{F}_{2^{n}}$ as a polynomial: the vector $s=$ $\left(s_{n-1}, s_{n-2}, \ldots, s_{0}\right)$ corresponds to the polynomial $s(x)=s_{n-1} x^{n-1}+s_{n-2} x^{n-2}+\cdots+s_{0}$. Here, each s_{i} is in \mathbb{F}_{2} so is 0 or 1 .
- If $\alpha^{j(n-1)}, \alpha^{j(n-2)}, \ldots, \alpha^{j \cdot 0}$ is the j th row of the matrix $V_{k, t}$, then the dot product of this row with the column vector s is exactly $s\left(\alpha^{j}\right)$. Thus, a polynomial $s(x)$ corresponds to a code word if and only if $s\left(\alpha^{j}\right)=0$ for $j=1,2, \ldots, 2 t$.
- The condition $s(\beta)=0$ for some $\beta \in \mathbb{F}_{2^{k}}$ occurs if and only if $s(x)$ is divisible by the minimum polynomial of β. So, let $p_{j}(x)$ be the minimum polynomial of α^{j}. Then $s(x)$ corresponds to a code word if and only if it is divisible by each $p_{j}(x)$ for $j \leq 2 t$, and this occurs if and only if $s(x)$ is divisible by $g(x)$, the least common multiple of the various $p_{j}(x)$.
- The polynomial $g(x)$ as just described is called the generator polynomial for the code. Say it has degree d. Then there are 2^{n-d} words of length n that correspond to multiples of $g(x)$, that is, the dimension of $\operatorname{BCH}(k, t)$ is $n-d$.
- We computed $g(x)$ for $\operatorname{BCH}(4,3)$ and found it has degree 10 . Thus, the dimension of the code is $15-10=5$. (Compare this with the earlier result that the dimension is $\geq n-k t$, which in this case asserts that the dimension is ≥ 3.)
- We learned one way to encode words of length $n-d$. Namely write such as a polynomial $b(x)$ of degree $<n-d$ (or possibly the 0-polynomial), and multiply by $g(x)$. Then $b(x) g(x)$ is the encoded version of $b(x)$. Conversely, one can divide a received word by $g(x)$ to retrieve the real word $b(x)$ (or detect that an error was made, if the division does not go exactly).

