Math 75 notes, Lecture 18 outline

P. Pollack and C. Pomerance

References below are to Pretzel's Error-correcting codes and finite fields:

- We reviewed material from Lecture 17 and also Lecture 11. In particular we discussed how to find a generator element in a finite field and illustrated this for the finite field \mathbb{F}_{2^4} .
- The new material we covered was in Ch. 14, sections 14.1 through 14.4.
- In particular we learned how to think of a vector in \mathbb{F}_{2^n} as a polynomial: the vector $s = (s_{n-1}, s_{n-2}, \ldots, s_0)$ corresponds to the polynomial $s(x) = s_{n-1}x^{n-1} + s_{n-2}x^{n-2} + \cdots + s_0$. Here, each s_i is in \mathbb{F}_2 so is 0 or 1.
- If $\alpha^{j(n-1)}, \alpha^{j(n-2)}, \ldots, \alpha^{j\cdot 0}$ is the *j*th row of the matrix $V_{k,t}$, then the dot product of this row with the column vector *s* is exactly $s(\alpha^j)$. Thus, a polynomial s(x) corresponds to a code word if and only if $s(\alpha^j) = 0$ for $j = 1, 2, \ldots, 2t$.
- The condition $s(\beta) = 0$ for some $\beta \in \mathbb{F}_{2^k}$ occurs if and only if s(x) is divisible by the minimum polynomial of β . So, let $p_j(x)$ be the minimum polynomial of α^j . Then s(x) corresponds to a code word if and only if it is divisible by each $p_j(x)$ for $j \leq 2t$, and this occurs if and only if s(x) is divisible by g(x), the least common multiple of the various $p_j(x)$.
- The polynomial g(x) as just described is called the generator polynomial for the code. Say it has degree d. Then there are 2^{n-d} words of length n that correspond to multiples of g(x), that is, the dimension of BCH(k, t) is n - d.
- We computed g(x) for BCH(4,3) and found it has degree 10. Thus, the dimension of the code is 15 10 = 5. (Compare this with the earlier result that the dimension is $\geq n kt$, which in this case asserts that the dimension is ≥ 3 .)
- We learned one way to encode words of length n-d. Namely write such as a polynomial b(x) of degree < n-d (or possibly the 0-polynomial), and multiply by g(x). Then b(x)g(x) is the encoded version of b(x). Conversely, one can divide a received word by g(x) to retrieve the real word b(x) (or detect that an error was made, if the division does not go exactly).