Math 75 notes, Lecture 17 outline

P. Pollack and C. Pomerance

References below are to Pretzel's Error-correcting codes and finite fields:

- We reviewed the definition of the Hamming codes $\operatorname{Ham}(k)$ and some of their properties: that they have length $n=2^{k}-1$, dimension $m=2^{k}-1-k$, are perfect codes, and have minimum distance 3. (See pp. 64, 66.)
- We showed that $\operatorname{Ham}(k)$ can also be characterized as follows: Let $n=2^{k}-1$ as before, and H_{k}^{\prime} be the $1 \times n$ matrix whose entries are the nonzero elements of $\mathbb{F}_{2^{k}}$. Then $\operatorname{Ham}(k)$ consists of those $x \in \mathbb{F}_{2}^{n}$ for which x^{T} belongs to the nullspace of H_{k}^{\prime}. (You should think of H_{k}^{\prime} as a generalized check matrix for $\operatorname{Ham}(k)$; it is not a check matrix in the normal sense because its entries are from $\mathbb{F}_{2^{k}}$, not \mathbb{F}_{2}.)
- We defined the codes $\mathrm{BCH}(k, t)$ for positive integers k and t with $t<2^{k-1}$ as the binary code with generalized check matrix $V_{k, t}$ (see p. 206). Here $V_{k, t}$ is the $2 t \times n$ matrix with i th row, j th column entry $\alpha^{i(n-j)}$, where α is a fixed generator of the multiplicative group $\mathbb{F}_{2^{k}} \times$. (Note: the book incorrectly reverses the dimensions of $V_{k, t}$.)
- We saw that if we defined $H_{k, t}$ by just taking the odd rows of $V_{k, t}$, then for $x \in \mathbb{F}_{2}^{n}$, we have

$$
H_{k, t} x^{T}=0 \Longleftrightarrow V_{k, t} x^{T}=0
$$

(See Proposition, p. 211.) So either matrix could be used to define $\mathrm{BCH}(k, t)$.

- We proved, using the $t \times n$ matrix $H_{k, t}$, that the dimension of $\operatorname{BCH}(k, t)$ is at least $n-k t$. (See part (a) of the Theorem on p. 212.)
- We proved that every set of $2 t$ columns of $V_{k, t}$ is linearly independent over $\mathbb{F}_{2^{k}}$ (and so also over \mathbb{F}_{2}). (See p. 213.) We deduced that the minimum distance of $\mathrm{BCH}(k, t)$ exceeds $2 t$, so that $\mathrm{BCH}(k, t)$ can correct any error of weight at most t. (See part (b) of the Theorem on p. 212.)

A brief word on notation: The book's examples revolve around $\mathrm{BCH}(4,3)$, so that elements of \mathbb{F}_{16} come into play. Here (see p. 101) \mathbb{F}_{16} is being identified with $\mathbb{F}_{2}[x] /\left(x^{4}+x^{3}+1\right)$, and to go from an integer $0 \leq n<15$ to an element of \mathbb{F}_{16}, one writes n in binary, so

$$
n=a \cdot 2^{3}+b \cdot 2^{2}+c \cdot 2+d, \quad \text { where } a, b, c, d \in\{0,1\},
$$

and views n as corresponding to the element

$$
a \beta^{3}+b \beta^{2}+c \beta+d,
$$

where $\beta=[x] \in \mathbb{F}_{2}[x] /\left(x^{4}+x^{3}+1\right)$. It turns out that β (which is ' 2 ' in this notation) is also a generator for \mathbb{F}_{16}^{\times}, and this is the generator that is used to define the generalized check matrices $H_{4,3}$ and $V_{4,3}$.

