Math 75 notes, Lecture 16 outline

P. Pollack and C. Pomerance

References below are to Pretzel's Error-correcting codes and finite fields:

- We reviewed the connection between a generator matrix for a code and a check matrix. In particular, we did this for the standard generator and check matrices for the $(6,3)$ triple check code over \mathbb{F}_{2}.
- We multiplied this check matrix by the 0 -vector and the 6 possible weight 1 vectors, getting 7 of the 8 possible vectors of length 3 . We found an eighth vector giving rise to the 8 th length- 3 vector, namely $(1,0,0,0,0,1)$ checks to $(1,1,1)$.
- These different vectors of length 3 are called syndromes, and we saw that if the word w has syndrome s, then the set of words having the exact same syndrome s is $C+w$, namely the equivalence class (coset) containing w.
- If we take as coset representatives (called leaders) words of minimal weight, we thus have a mechanism for error correction. For example, if $(1,1,0,0,0,0)$ is the received word, we can multiply it by H to see if it is a code word. Well no, it isn't, the product is the syndrome $(0,1,1)$, which is not the 0 -vector, so w is not a code word. But the weight 1 vector $(0,0,1,0,0,0)$ has the same syndrome, so it is reasonable to suspect that this is the error pattern. That is, we should subtract (same as add in characteristic 2) ($0,0,1,0,0,0$) from the received word to get $(1,1,1,0,0,0)$ to get the likely code word that was sent (which then decodes to real word ($1,1,1$), since we are dealing with standard matrices).
- We noticed that if e_{i} is the i th standard basis vector in F^{n} and c_{i} is a scalar (element of F), then $H\left(c_{i} e_{i}\right)^{T}$ is just c_{i} times the i th column of the check matrix H. And so if $w=\sum c_{i} e_{i}$ is a linear combination of the standard basis vectors, then $H w^{T}$ is exactly $\sum c_{i} H_{i}$, where H_{i} is the i th column of H. We used this to prove the following theorem, which is stated a little differently in the book (see p. 59).
Theorem 1. For a check matrix H of the linear code C, let d_{H} be the minimal size of a set of linearly dependent columns of H. Then $d_{H}=d(C)$.

This has the corollary that if over \mathbb{F}_{2} the matrix H has no zero column and the columns are all different, then $d_{H} \geq 3$, so therefore $d(C) \geq 3$, and therefore the code can correct at least 1 error.

- We introduced Ham_{k}, the binary Hamming code with parameter k. The check matrix H_{k} is just a listing of all the nonzero vectors of length k, so is a $k \times\left(2^{k}-1\right)$ matrix. The corresponding code has length $2^{k}-1$ and dimension $2^{k}-k-1$. For example, when $k=3$, we get a $(7,4)$ code. It has minimal distance 3 , so can correct 1 error. Note that it is denser (more efficient) than the $(6,3)$ triple check code, since its density is $4 / 7$ in comparison to $3 / 6=1 / 2$ for the triple check code.

