
Math 75 notes, Lecture 13 outline

P. Pollack and C. Pomerance

References below are to Pretzel’s Error-correcting codes and finite fields :

• We saw that the minimum distance d(C) of a linear code (over a finite field F ) is the
same as the minimum weight of a nonzero codeword (p. 32).

• We reviewed the theorem from the previous lecture that one should be able to detect
up to d(C) − 1 errors for the code C, and up to 1

2
(d(C) − 1) errors can be corrected.

We illustrated this for our three example codes: the (8,7) parity check, the (9,3) triple
repetition, and the (6,3) triple check.

• We discussed four fundamental algorithmic problems in connection with coding theory:

(1) Have an encoding algorithm, which is a function that sends “real” words (vectors
in Fm) to code words (vectors in C ⊆ F n). It should be a one-to-one correspondence
between Fm and C.

(2) Have a decoding algorithm, which is the inverse function of the encoding algorithm.
That is, it sends code words to real words.

(3) Be able to recognize when a word in F n is a code word or not (error detection).

(4) Be able to find the closest code word to a given word in F n if there is a unique closest
code word (error correction).

• We usually have in the case of a linear code, an encoding function that is a linear transfor-
mation from the vector space Fm to the vector space C (in F n). Say this transformation
is denoted E (for encoder). (Section 3.6)

• Corresponding to given basis vectors in Fm and in C, we have a generator matrix; it is
n×m with entries in the finite field F . (Section 3.7)

• We usually use the standard basis e1, e2, . . . , em of Fm. Note that ei has 1 in the ith place
and 0’s in the other m − 1 places. (The book calls these “unit words.”) Then the basis
for C is just E(ei) for i = 1, . . . ,m. The generator matrix then has for its ith column the
code word E(ei). (Section 3.8)
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