
Math 75 notes, Lecture 11

P. Pollack and C. Pomerance

Finite field notation and presentation

We have seen that for each prime or prime power q, there is a unique (up to isomorphism)
finite field with q elements. We denote this finite field Fq. (Some books use the notation GF (q),
where the letters GF stand for “Galois field”.)

From a practical point of view, it is somewhat glib to say there is just one finite field of a
given size, even though it is true! For example, if f(x) and g(x) are two irreducible polynomials
in (Z/(2))[x] of degree 100, and f(x) has just 3 nonzero terms, while g(x) has 50 nonzero terms,
it is much more pleasant to do arithmetic in (Z/(2))[x]/(f(x)) than in (Z/(2))[x]/(g(x)), even
though both of these finite fields are isomorphic (to F2100).

As we shall see just below, the multiplicative group F× of a finite field F always has a
generator. It is often desirable as well to have a presentation of the field Fpd as Fp[x]/(f(x)),
where f is irreducible of degree d, f has just a few nonzero terms, and [x] is itself the generator of
the multiplicative group F×

pd. It is an interesting research problem to show that such polynomials

(for which [x] is a cyclic generator and the polynomial is sparse) exist and to efficiently find
them.

The multiplicative group of a finite field

In this section we study the abelian group F× for a finite field F . We have seen that some
finite abelian groups have a generator and some do not. For example, the group of units in
Z/(8) does not have a generator, but the additive group Z/(8) does. In group theory, we say
that a group that is generated from a single element is cyclic, and perhaps it is better for us to
use this standard terminology. We now prove the following result.

Theorem 1. If F is a finite field, then F× is a cyclic group.

Proof. Suppose F has q elements, so that the group F× has q − 1 elements. We have seen that
each element of F× has order some divisor of q − 1. In particular, let N(d) be the number of
elements of F× of order d, so that N(d) = 0 unless d | q−1. We are to show that N(q−1) > 0.
We first prove that

if N(d) > 0, then N(d) = ϕ(d), (1)

where ϕ is Euler’s function. (Note that ϕ(d) is the number of integers j in the interval [1, d]
that are relatively prime to d.) Recall the complete list of all powers of an element a of order
d is a, a2, . . . , ad, so a has exactly d powers. To see (1), first note that if a has order d, the
order of any aj is quite predictable: it is d/(j, d). Indeed, this follows since jd/(j, d) is the first
multiple of j that is also a multiple of d (it is the least common multiple of j and d), and a
necessary and sufficient condition for ajm to be the identiy is that d | jm. Thus, there are at
least ϕ(d) elements of order d, namely the powers aj for j ∈ [1, d] and j relatively prime to d.
Now say, there is some other element b of order d. Note then that b is not of the form aj for any

1



j (do you see why?). Consider the polynomial xd − 1 in F [x]. Note that a is a root, and in fact
each power of a is a root. So xd − 1 has d roots among the powers of a. But it also has b as a
root, and b is not a power of a, so the polynomial has at least d + 1 roots. But it is impossible
for a polynomial over a field to have more roots than its degree, so this contradiction completes
our proof of (1).

To complete the proof of Theorem 1, we first establish the following pleasant identity from
elementary number theory: ∑

d|n

ϕ(d) = n.

Indeed, consider the n fractions 1/n, 2/n, . . . , n/n and reduce each to lowest terms. The reduced
fractions have denominators running over the various divisors d of n, and each reduced fraction
j/d with j relatively prime to d and 0 < j/d ≤ 1 will occur. Thus, there are ϕ(d) reduced
fractions with denominator d, which proves our identity.

Combining our identity for ϕ and (1), we have

q − 1 =
∑

d|q−1

N(d) =
∑

d|q−1
N(d)>0

N(d) =
∑

d|q−1
N(d)>0

ϕ(d) ≤
∑

d|q−1

ϕ(d) = q − 1.

Since this inequality chain begins and ends with q − 1, it must actually be an equality all the
way through. But then look at the point where we drop the condition N(d) > 0; it must be
that no terms are dropped! That is, N(d) > 0 for every d | q − 1, which shows in particular
that N(q − 1) > 0, and in fact is equal to ϕ(q − 1). Thus, there is a generator and F× is a
cyclic group.

The automorphism group of a finite field

An automorphism of a field F is an isomorphism of F to itself. That is, it is a function
φ : F −→ F such that φ is one-to-one and onto (a bijection) and

φ(a + b) = φ(a) + φ(b), φ(ab) = φ(ab)

for all a, b ∈ F . The automorphisms of F form a group under the operation of composition of
functions. (It is easy to check that if φ1, φ2 are both automorphisms of F , then φ1 ◦ φ2 and
φ−1

1 are as well.) For some fields, the automorphism group is quite boring. For example, it is
easy to see that the only automorphism of Q is the identity, and the same holds for the finite
fields Fp with p prime. It is a not-so-trivial exercise to prove that the only automorphism of R

is the identity map. The field C has a nontrivial automorphism, namely, complex conjugation.
Does it have any others? This question actually has its roots in the set-theoretic foundations
of mathematics as a whole.

An immediate property of an automorphism φ of a field F is that

φ(1) = 1.
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Indeed, if φ(1) = 0, then φ must be the 0-function, and so is not an automorphism. But
φ(1) = φ(1 · 1) = φ(1)2, so that φ(1) is a nonzero root of x2 − x, which means it is 1. Using
this, one finds that if n is any integer, then

φ(n · 1) = n · 1.

Using this, one sees that if F has characteristic some prime p, then φ acts like the identity map
on the subfield Fp. (If F does not have prime characteristic, which means that 1 does not have
an additive order in F , then Q is seen to be a subfield of F , and φ acts like the identity on this
subfield.)

Suppose now that p is prime, and consider the finite field Fpd. Note that if f(x) ∈ Fp[x]
and f(a) = 0, where a ∈ Fpd, then for any automorphism φ of Fpd, we have f(φ(a)) = 0.
That is, for any root a of f , we have that φ(a) is another root. To see this, note that if
f(x) = cnx

n + cn−1x
n−1 + · · ·+ c0, then

0 = φ(0) = φ(f(a)) = φ(cna
n + · · ·+ c0) = φ(cna

n)+ · · ·+φ(c0) = cnφ(a)n + · · ·+ c0 = f(φ(a)).

Other than the identity, can we spot any automorphisms of Fpd? Let’s try the function
which takes an element to its pth power, say τ(a) = ap for each a ∈ Fpd. It is quite easy to
show that τ is an automorphism, the only possibly tricky thing being that τ(a+b) = τ(a)+τ(b);
and this is the bad student’s binomial theorem.

If d > 1, then τ , known as the Frobenius automorphism of Fpd, is not the identity. Indeed,
τ(a) = a if and only if a is a root of xp − x, and this polynomial has exactly p roots in Fpd

(which comprise the subfield Fp).
Let’s try composing τ with itself to get more automorphisms. Write τ j for τ ◦ τ ◦ · · · ◦ τ ,

with j copies of τ . If you repeatedly raise something to the pth power, and do so j times, then
this is raising to the power pj . That is, τ j(a) = apj

for each a ∈ Fpd. Note that this cannot be

the identity map if 1 ≤ j ≤ d− 1, since the polynomial xpj

− x cannot have pd roots. However,
τd is indeed the identity map, since we’ve seen that every element of Fpd is a root of xpd

− x.
Thus, τ has order d in the automorphism group.

We have just learned that the field Fpd has d distinct automorphism, namely τ j for j =
1, . . . , d, where τ is the Frobenius automorphism. Is this the complete story? Yes, let’s see why.

Let f(x) ∈ Fp[x] be an irreducible polynomial of degree d. (We have seen they must
exist.) We know that f splits into linear factors in Fpd[x], so let a be a root. We claim that
τ j(a) for j = 1, . . . , d describe d different elements of Fpd. Indeed, suppose τ i(a) = τ j(a)
where 1 ≤ i < j ≤ d. Let k = d − j and take τk of both sides of the equation, getting
τ i+k(a) = τd(a) = a. This implies that the polynomial xpi+k

− x has a as a root, so must be
divisible by f(x), which is the minimal polynomial of a. But then d = deg(f) | i + k, which
cannot occur since i + k < d.

So, quite remarkably, we can now write out the complete factorization of f(x) over Fpd. For
f in Fp[x] a monic irreducible of degree d, with a ∈ Fpd as a root, we have

f(x) = (x − a)(x − ap) . . . (x − apd−1

).
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(Note that τd(a) = apd

is the same as a itself.)
Now suppose there is some other automorphism φ of Fpd that is not a power of τ . Since

f(φ(a)) = 0, we must have that φ(a) = τ j(a) for some j. But, we have seen that Fpd is
isomorphic to Fp[x]/(f(x)), where we let [x] correspond to a ∈ Fpd. Thus, viewing φ as an
automorphism of Fp[x]/(f(x)), we have that φ([x]) is the same as τ j([x]). But every member
of Fp[x]/(f(x)) is of the form g([x]) where g ∈ Fp[x], so τ j and φ are equal on every member
of the field. We have just proved that every automorphism of Fpd is a power of the Frobenius
automorphism τ .

We record what we have learned:

Theorem 2. If τ is the pth power map, then τ is an automorphism of Fpd. There are exactly d
automorphisms of this field, namely τ j for j = 1, . . . , d, where τd is the identity automorphism.
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