
Math 75 notes, Lecture 9

P. Pollack and C. Pomerance

The number of monic irreducibles of degree d

Recall that if F is a field, we let I(F, d) denote the set of monic irreducible polynomials in
F [x] of degree d. Depending on the field, this set can be infinite, finite, or even empty. For
example, if F = C, the complex numbers, then I(F, d) is empty whenever d > 1. (This is the
Fundamental Theorem of Algebra.) A consequence is that I(R, d) is empty whenever d > 2.
On the other hand, I(Q, d) is infinite for each d, since xd + p is irreducible in Q[x] for every
prime p. (Do you know how to prove this?)

It is clear that if F is a finite field, then I(F, d) cannot be infinite, since if #F = q, there are
just qd monic polynomials of degree d. Let I(F, d) denote the number of elements of I(F, d).
One of our goals with the past few lectures is, when F is a finite field, to get a formula for
I(F, d). We will do this via the irreducible factorization of xqd

− x:

xqd

− x =
∏

j|d

∏

f(x)∈I(F,j)

f(x) (when #F = q). (1)

By comparing degrees of the left and right sides, we immediately have that

qd =
∑

j|d

jI(F, j). (2)

As you have seen on homework, this formula can then be used to compute any I(F, d).
So, what is the difficulty? We have already proved many results about xqd

−x. In particular
we know that each irreducible divisor of xqd

− x in F [x] has its degree dividing d, and we know
that every irreducible f(x) ∈ F [x] of degree dividing d also divides xqd

− x. Doesn’t this
then establish (1)? Almost, but not quite. This shows that in the irreducible factorization of
xqd

− x in F [x], we see appearing all of the members of the various I(F, j) for j | d and no
other irreducibles, but these irreducible factors might occur to an exponent higher than the
first power. So, if we could prove that the irreducible factorization of xqd

−x is squarefree (that
is, not divisible by the square of an irreducible polynomial), then we would be finished with
the proof of (1) and (2).

If you’ve been following though, we have already proved that xqd
− x is squarefree! Well,

almost. We did this under the additional assumption that there exists an irreducible polynomial
of degree d. (Do you recall the proof?) Perhaps we can use this, and indeed we can. First note
that there is absolutely no problem when d = 1, since

xq − x =
∏

a∈F

(x − a)

is indeed squarefree (see Theorem 3 in Lectures 4&5). Now take d to be a prime number. If
there is an irreducible polynomial in F [x] of degree d, we would know that xqd

−x is squarefree,
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so assume such a polynomial does not exist. Since d is prime, it follows that in the irreducible
factorization of xqd

−x, we only see degree 1 factors, and at least one of them, say x−a appears
with an exponent at least 2. In particular, we have the factorization

xqd

− x = (x − a)2g(x) (3)

for some g(x) ∈ F [x]. Let us replace x with x + a in this identity. Doing so on the right side
We get x2g(x + a). Doing so on the left side, we get

(x + a)qd

− (x + a) = xqd

+ aqd

− x − a,

where we have used Theorem 2 and Corollary 1 in Lectures 7&8. But by Theorem 3 in Lec-
tures 4&5, we have aqd

= a, so the last expression above simplifies to xqd
− x. So replacing x

with x + a in (3) leads to

xqd

− x = x2g(x + a).

But visibly the left side is not divisible by x2, so this equation must be wrong. Thus, xqd
− x

is in fact divisible by an irreducible polynomial of degree d, when d is prime, so it must be
squarefree.

By way of mathematical induction, let n ≥ 2 and suppose that we have shown that over
any finite field, say with Q elements, and any positive integer d with less than n prime factors
(counted with multiplicity), we have xQd

− x squarefree. Now suppose that d has n prime
factors and consider the polynomial xqd

− x over our field F of q elements. Let r be a prime
factor of d. From the above paragraph we have seen that there is an irreducible polynomial
f(x) ∈ F [x] of degree r. Let K = F [x]/(f), which is a finite field with Q = qr elements. Since

d/r has fewer than n prime factors, by the induction hypothesis, we know that xQd/r
− x is

squarefree in its factorization in K[x]. But

Qd/r = (qr)d/r = qd,

so xqd
− x is squarefree in its factorization in K[x]. Now K contains F as a subfield, so the

factorization in K[x] being squarefree implies that the factorization in F [x] is also squarefree.
(If g(x)2 | xqd

−x in F [x], then if h(x) is an irreducible factor of g(x) in K[x], then h(x)2 | xqd
−x

in K[x].)
So, this does it. We have proved that xqd

−x is always squarefree, and so we have proved (1)
and (2). We record this in the following theorem

Theorem 1. If F is a finite field with q elements, we have (1) and (2).

We can use this result to get a very useful approximate formula for I(F, d).

Corollary 1. If F is a field with q elements, then for each positive integer d we have

1

d
qd −

2

d
qd/2 < I(F, d) ≤

1

d
qd.
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Proof. One of the terms in the sum in (2) is dI(F, d), and every other term that may exist
in the sum is nonnegative, so we have dI(F, d) ≤ qd, which gives the second inequality in the
corollary. Since each jI(F, j) ≤ qj (just proved!), the identity (2) implies that

dI(F, d) = qd −
∑

j|d
j<d

jI(F, j) ≥ qd −
∑

j|d
j<d

qj ≥ qd −

⌊d/2⌋∑

j=1

qj, (4)

where ⌊y⌋ is the largest integer that is at most y (sometimes denoted [y], but this might be
confusing in our context). Let m = ⌊d/2⌋. Then, by the formula that sums a geometric
progression,

m∑

j=1

qj =
qm+1 − q

q − 1
<

qm+1

q − 1
= qm q

q − 1
≤ 2qm.

Thus, (4) implies that

I(F, d) >
1

d
qd −

1

d
2qm,

which proves the first inequality of the corollary.

Before we leave this topic, we remark on a few things. First, the lower bound inequality in
Corollary 1 implies that I(F, d) > 0. We record this as follows.

Corollary 2. If F is a finite field and d is a positive integer, then there is at least one irreducible

polynomial in F [x] of degree d. In particular, if q is either a prime number or a power of a

prime, then there is a finite field with q elements.

We leave the details of the proof for a homework problem or test question.
Another remark concerning Corollary 1 is the main order of magnitude of I(F, d), namely,

it is about qd/d. That is, about 1 in d polynomials in F [x] of degree d are irreducible. Contrast
this with Q[x]. For example, take degree 2. For a quadratic polynomial to be irreducible in
Q[x], it’s discriminant must be a square. But square rationals are very sparsely distributed
in the rationals, so the chance of choosing a “random” quadratic in Q[x] and having it be
irreducible is close to 1, while in a finite field, the chance is close to 1/2.

Perhaps, it makes more sense to compare the distribution of irreducibles in F [x] with the
distribution of prime numbers in Z. Up to a high number N , the number of primes is approx-
imately N/ log N in that the ratio of the count to this expression tends to 1 as N → ∞; this
is the celebrated Prime Number Theorem. (Note that log is the natural logarithm.) On the
other hand, the number of monic irreducible polynomials in F [x] of degree N is about qN/N ,
which expression is exactly qN/ logq(q

N), where q = #F and logq is the base-q logarithm. Note
that the Prime Number Theorem for Z is very hard to prove, so we should feel a sense of
accomplishment that we have done the analogue for F [x].
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