
Math 75 notes, Lectures 7 and 8

P. Pollack and C. Pomerance

We begin by establishing a few elementary properties of the order of an element in an abelian
group. (Note: Most of what we say is valid in any group, not necessarily abelian.)

But first a comment about notation. If we write the group operation with multiplicative
notation, then g ◦ g ◦ · · · ◦ g, where there are k copies of g, is abbreviated gk. We have the
usual laws of exponents as discussed in Lecture 6. And inverses enter when we use negative
exponents. But what if we are writing the group additively? Then we abbreviate g+g+ · · ·+g,
where there are k copies of g, by kg. It looks like multiplication, but we are to think of it as
repeated addition (sort of the way multiplication is first introduced in elementary school!). And
the laws of “exponents” now show themselves as

k1(k2g) = k1k2g, (k1 + k2)g = k1g + k2g.

By convention, we take 0g as the group identity of the group, usually called “0” when additive
notation is used. Further, if k is a positive integer, we have (−k)g = k(−g) = −(kg), and the
above displayed rules continue to hold when we allow k1, k2 to run over all integers.

It is strange that it looks like we are doing something entirely different, but additive notation
is just a different notation! Note that it is common to use multiplicative notation when talking
about a generic group; eg. see Theorem 1 below.

Let’s look at some examples with both additive and multiplicative notation.

1. Suppose G is the multiplicative group of the finite field Z/(7). Then 3 has order 6, since
36 ≡ 1 (mod 7), but no smaller positive exponent will do. In fact, in the terminology
of Lecture 6, we have that 3 is a generator of the group. Indeed, if we look at 3j for
j = 0, 1, . . . , 5, we get the sequence of group elements 1, 3, 2, 6, 4, 5, which is indeed every
element of the group.

2. Suppose G is the additive group Z/(6). Then 1 has order 6, and the sequence j1 for
j = 0, 1, . . . , 5 is 0, 1, 2, 3, 4, 5. So this group has a generator as well.

3. Suppose G is the group {1, 3, 5, 7} with the operation being multiplication modulo 8. (It
is the group of units of the ring Z/(8).) Then 1 has order 1, and the other elements have
order 2. This group does not have a generator.

4. Suppose G is the multiplicative group of the finite field (Z/(3))[x]/(x2 + 1). Then [x] has
order 4; it is not a generator. But [x+ 1] has order 8; it is a generator of G.

The following result is due to Lagrange. We state it in multiplicative notation.

Theorem 1. If G is an abelian group with n elements, and g ∈ G, then gn = e.
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Proof. Let a be the element of G which consists of the product of every group element. The
function that sends b ∈ G to gb is one-to-one, and therefore onto. Thus,

a =
∏
b∈G

b =
∏
b∈G

(gb) = gn
∏
b∈G

b = gna.

Thus, multiplying both sides of this equation by a−1, we get the result.

You should compare this general result with Theorem 3 in the Lecture 4&5 notes. There
we had the exact same proof, but it was applied specifically to the multiplicative group of a
finite field. Though Lagrange’s theorem holds also for groups that are not necessarily abelian,
the above proof does not work in the general case; do you see where we used the commutative
rule for the group operation?

We also shall need the following simple consequence of the division algorithm in Z.

Proposition 1. If g is an element in a group with finite order m, then gn = e if and only if
m | n.

Proof. If n = dm for some integer d, then gn = gdm = (gm)d = ed = e, so one direction is done.
Now assume that gn = e. Write n = dm+ r where the remainder r satisfies 0 ≤ r < m. Then

e = gn = gdmgr = egr = gr,

so that by definition of order, we cannot have r > 0. Thus, r = 0 and we have m | n.

If this proof looks familiar, it should! We used the same idea in proving Lemmas 1 and 2
in Lecture 6. In fact, it is possible to interpret those Lemmas in this context so that they will
follow from Proposition 1. For example, in Lemma 2, we are really dealing with the group of
units of the ring Z/(qm − 1), and q in this group has order m. Thus, the set of integers n for
which qn ≡ 1 (mod qm − 1) coincides with the multiples of m.

The additive group of a finite field

Suppose F is a finite field with q elements. By Lagrange’s theorem (Theorem 1), we have
that when we add 1 ∈ F to itself q times, we get 0 ∈ F . Let m be the order of 1 in the additive
group of F , so that m | q by Proposition 1. Suppose p is a prime factor of m, and write m = pd.
Then, by the additive version of the rules for exponents, we have

0 = m1 = (pd)1.

But note that by the distributive rule in the field F , we have

(pd)1 = (p1)(d1).

Putting the last two equations together, we see that we have the product of two field elements
being 0, so that at least one of them is 0. Thus, by Proposition 1, we have m | p or m | d.
But, 0 < d < m, so the second possibility does not hold. But also p ≤ m, so m | p implies that
m = p. We have just learned an important fact about finite fields:
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Proposition 2. In a finite field F with q elements, there is a prime p | q with p1 = 0.

This prime p, which is the additive order of 1, is called the characteristic of the field F .
We leave it as a homework assignment to prove that if F is a field with characteristic p, then
pα = 0 for all α ∈ F .

The number of elements of a finite field

We can say more: The number of elements of a finite field is either a prime number or a
power of a prime number.

Theorem 2. If F is a finite field with q elements and characteristic p, then q = pj for some
positive integer j.

Proof. We first note that the finite field Z/(p) can be seen to be a subfield of F . This can be
worked out easily by considering the subset {0, 1, 2, . . . , p−1} of F (think of it as adding 1 ∈ F
to itself 0, 1, . . . , p − 1 times) and showing that the addition and multiplication of F are the
same as dealing with this set as if it were Z/(p).

Now we appeal to the viewpoint of linear algebra! Note that F is a vector space with the
field of scalars being Z/(p). You should check this by reviewing the definition of vector space
and seeing that all of the rules hold. (Note that this vector space has additional algebraic
structure in that we can multiply vectors; we ignore this for now.) This vector space must be
finite-dimensional since it has only finitely many vectors. Say the dimension is j, so that there
is a basis α1, α2, . . . , αj. That is, every element β ∈ F has a unique representation as

β = s1α1 + s2α2 + · · ·+ sjαj,

where the “scalars” si come from the subfield Z/(p). This then allows us to actually count
the number of elements of F , since there are p choices for each si, and different choices for
the j-tuple (s1, s2, . . . , sj) lead to different elements β in F . So, there are precisely pj elements
of F .

Using this theorem, we have the following remarkable consequence, which might be dubbed,
“the binomial theorem for bad students.”

Corollary 1. If F is a finite field with charactersitic p and if α, β ∈ F , then

(α + β)pk

= αpk

+ βpk

for every nonnegative integer k.

Proof. The result clearly holds for k = 0. Let us show too that it holds for k = 1. By the
binomial theorem (for good students!), we have

(α + β)p = αp +
p!

1!(p− 1)!
αp−1β + · · ·+ p!

(p− 1)!1!
αβp−1 + βp.
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Consider a typical coefficient of one of the middle terms. It is p!/(l!(p−l)!), where 1 ≤ l ≤ p−1.
But p is a prime number and p divides the numerator of this fraction. Since the fraction reduces
to an integer and p does not divide the denominator, by unique factorization in Z, we have that
p divides the quotient. So, a typical middle term can be written as pγ for some field element
γ. This field element is 0 (using the homework assignment dealing with characteristic), so the
right side of the above displayed equation simplifies to αp + βp, which is the corollary in the
case k = 1. Assume the corollary holds for some k ≥ 1, and note that we have

(α + β)pk+1

=
(

(α + β)pk
)p

=
(
αpk

+ βpk
)p

= αpk+1

+ βpk+1

.

Thus, the corollary follows by mathematical induction.

The qth power map

This last result can be extended easily to (α+ β + γ)pk
, etc. In fact, we have the following

beautiful result, which uses this idea and also the proof of Corollary 1.

Theorem 3. Suppose F is a finite field with q elements and suppose f(x) ∈ F [x]. Then

f(x)q = f(xq).

Proof. Recall from Theorem 2 that q = pj for some positive integer j, where p is the charac-
teristic of F . Write f(x) out as cdx

d + cd−1x
d−1 + · · · + c0. By the same proof as Corollary 1

extended to sums with possibly more than 2 summands, we have

f(x)q = (cdx
d + cd−1x

d−1 + · · ·+ c0)
q = (cdx

d)q + (cd−1x
d−1)q + · · ·+ cq0

= cqdx
dq + cqd−1x

(d−1)q + · · ·+ cq0.

But from Theorem 3 in Lectures 4&5, we have that cq = c for each c ∈ F , so that this last
expression simplifies to cdx

dq + cd−1x
(d−1)q + · · ·+ c0, which is indeed f(xq).

Irreducible divisors of xqd − x

We have seen that if F is a finite field with q elements and f(x) ∈ F [x] is irreducible of
degree j, then f(x) | xqd−x when d is a multiple of j. We are now ready to prove the converse.

Theorem 4. Suppose that F is a finite field with q elements and f(x) is an irreducible factor
in F [x] of xqd − x. Then deg(f) | d.

Proof. Say deg(f) = j. Let K be the finite field F [x]/(f), so that K has qj elements. Consider
the function τ that takes an element β ∈ K and sends it to βq. Obviously

τ(β1β2) = (β1β2)
q = βq

1β
q
2 = τ(β1)τ(β2), (1)
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since multiplication is commutative. What is striking is that we also have

τ(β1 + β2) = τ(β1) + τ(β2). (2)

We leave this property as a homework problem. Finally note that from Theorem 3 of Lectures
4&5 we have that

τ(c) = c for c ∈ F. (3)

We conclude using the three properties (1), (2), (3) of τ , that if g(t) ∈ F [t], then for β ∈ K,
we have

τ(g(β)) = g(τ(β)). (4)

Let ι denote the identity map on K and note that τ j = ι. (The power of τ is understood as
repeated applications of τ ; that is, τ composed with itself j times.) Indeed, τ j(β) = βqj

, so the
assertion follows from Theorem 3 in Lectures 4&5. Further, the order of τ is exactly j. (The
order is in the group of one-to-one correspondences of K under compostition—since τ composed
with itself j times is the identity function, it is clear that τ is a one-to-one correspondence on
K.) Indeed, if 1 ≤ k < j and τ k = ι, then βqk

= β for all β ∈ K. Thus the polynomial
tq

k − t ∈ K[t] has #K = qj roots. A polynomial cannot have more roots than its degree, so we
cannot have τ k = ι for 1 ≤ k < j. This proves our assertion that the order of τ is j.

We will next show that τ d = ι, so that the conclusion j | d will then follow from Proposition 1
in this lecture. To see that τ d = ι, first note that for the element α = [x] of K we have

τ d(α) = αqd

= [x]q
d

= [xqd

].

But by the assumption that f(x) | xqd − x, we have [xqd
] = [x], so we conclude that τ d(α) = α.

Thus, τ d acts like the identity ι on the key element α = [x] of K. We’ll now show it acts as the
identity on every element β of K.

Each element β ∈ K is uniquely representable as [cj−1x
j−1 + · · · + c0] where each ci ∈ F

(see Theorem 4 of Lecture 2). That is, β = g(α) where g(t) ∈ F [t] has degree ≤ j − 1 or is 0.
Thus, by applying (4) d times, we have

τ d(β) = τ d(g(α)) = g(τ d(α)) = g(α) = β.

We indeed have that τ d = ι, and the proof of the theorem is complete.
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