
Math 75 notes, Lecture 6

P. Pollack and C. Pomerance

1 More on the factorization of xqd − x

Let’s review where we were at the end of the last lecture. After a bout with some difficult
notation, we had finished proving the following result:

Theorem 1. Let F be a finite field with q elements, and let f(x) be an irreducible polynomial
in F [x] of degree d. Then f(x) divides xqd − x.

Thus all irreducibles of degree d show up in the factorization of xqd − x. We now show that
in fact the same is true for all irreducibles of degree j dividing d:

Theorem 2. Let F be a finite field with q elements, and let f(x) be an irreducible polynomial
in F [x] of degree j. If j divides d, then f(x) divides xqd − x.

Before we can prove this we need a few easy preliminary lemmas.

Lemma 1. Let F be a field. If m and n are positive integers, then xm − 1 divides xn − 1 in
F [x] if and only if m divides n.

Actually the ‘if’ part is all we need to prove Theorem 2, but we shall later require the ‘only
if’ portion too, so we prove both of them here.

Proof. We work with congruences modulo xm − 1 in the ring F [x]. Then, by our definition of
congruence,

xm ≡ 1 (mod xm − 1).

Suppose that m divides n, so that n = mq for some positive integer q. Raising both sides of
this congruence to the qth power we find

xn = xmq ≡ 1 (mod xm − 1).

But this says precisely that xm − 1 divides xn − 1.
The other direction is similar. Suppose xm − 1 divides xn − 1 and write n = mq + r, where

0 ≤ r < m. Then working as above, we find

xmq ≡ 1 (mod xm − 1),

and so multiplying by xr, we get

xn = xmq+r ≡ xr (mod xm − 1).
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But in this case we are supposing that xn ≡ 1 (mod xm − 1). So we get that

1 ≡ xr (mod xm − 1),

so that xm − 1 divides xr − 1. But this forces r to be zero, since otherwise xr − 1 would be a
nonzero polynomial of smaller degree than xm − 1.

Lemma 2. Let q be any integer with q ≥ 2. Let m, n be positive integers. Then qm− 1 divides
qn − 1 if and only if m divides n.

Proof. We leave this as homework. The argument is almost exactly the same as above, except
that instead of working modulo xm − 1 in F [x] one works modulo qm − 1 in Z.

We can now prove Theorem 2.

Proof. Let f(x) ∈ F [x] be an irreducible polynomial of degree j dividing d. By the last lemma,
qj − 1 divides qd − 1. And so by Lemma 1,

xqj−1 − 1 | xqd−1 − 1 in F [x].

Thus there is a Q(x) ∈ F [x] with

xqd−1 − 1 = (xqj−1 − 1)Q(x),

and so, multiplying both sides by x,

xqd − x = (xqj − x)Q(x).

But we already know from Theorem 1 that f(x) divides xqj − x, so that f(x) is a factor of the
right-hand side. Thus f(x) must also be a factor of the left-hand side, which is what we wanted
to show.

It is natural to wonder how much of the truth is contained in Theorem 2. In other words,
consider the factorization of xqd−x. We know from Theorem 1 that all primes of degree dividing
d must show up. What are the exponents on these primes? And what other primes (if any?)
show up in the factorization?

We can maybe get a feel for this by doing some computations. As an example we take
F = Z/(3). Then in F [x], we have

x3 − x = x(x + 1)(x + 2),

x32 − x = x(x + 1)(x + 2)(x2 + 1)(x2 + x + 2)(x2 + 2x + 2),

x33 − x = x(x + 1)(x + 2)(x3 + x2 + 2x + 1)(x3 + 2x2 + x + 1)(x3 + x2 + 2)(x3 + 2x2 + 2x + 2)

· (x3 + 2x + 2)(x3 + 2x2 + 1)(x3 + 2x + 1)(x3 + x2 + x + 2).
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In these examples of factorizations of x3d − x for d = 1, 2, 3, we have, as we must, all the
irreducibles of degree dividing d. More noteworthy is that in these examples we have only
these primes, and that all of these primes show up exactly once (there is no exponent > 1
on any of them). It is not hard, on a computer (say), to confirm that this pattern seems to
continue for larger d.

Thus, we might well conjecture the following: Let I(F, d) be the set of irreducible polyno-
mials of degree d over F (always understood to be monic).

Conjecture 1. For every finite field F with q elements and any positive integer d, we have

xqd − x =
∏
j|d

∏
P∈I(F,j)

P.

This conjecture turns out to be correct and to have a number of important applications.
Unfortunately it will be a little while before we have the tools at our disposal to give the proof.

2 Groups, generators, and finite fields

We need a few more results from the theory of finite abelian groups. Let G be a finite abelian
group. If g ∈ G, we define the order of the element g to be the smallest positive k for which

g ◦ g ◦ · · · ◦ g = e,

where e is the identity of the group and g appears on the left k times. This is a bit cumbersome
to write, so we often abbreviate the left hand side to gk.

It is convenient to also assign meaning to gk when k = 0 or when k is negative. We can
get started by remembering that we have already defined g−1 – it is just the inverse of g whose
existence is guaranteed by the group axioms. We define g−2, g−3, etc., in terms of powers of
g−1, by setting, for k < 0,

gk = (g−1)−k.

Notice that if k < 0, then −k > 0, and so we already know what the right hand side means.
We still have to define g0, but that’s easy; we let it be the identity element e of our group.
With these definitions, it is easy to verify that the familiar laws of exponents hold: For every
g ∈ G and every pair of integers k, l, we have

gkgl = gk+l and (gk)l = gkl.

We say that the element g ∈ G generates the group G (or that g is a generator of G) if
every element of G can be written in the form gk for some integer k. A group with a generator
is called a cyclic group.

Lemma 3. Let G be a finite abelian group and suppose g is an element of G of order m. Then
the m elements gr, for r ∈ {0, 1, 2, . . . ,m− 1}, are all distinct. Moreover, every power of g has
the form gr for some r ∈ {0, 1, 2, . . . ,m− 1}.
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Proof. If the elements gr were not all distinct, then we would have

gi = gj for some 0 ≤ i < j < m.

Multiplying both sides by g−i we find that

e = g0 = gjg−i = gj−i.

Let l be the integer j − i. Then gl = e and l is a positive integer smaller than m. But m was
supposed to be the smallest positive integer for which gm = e, so that we have a contradiction.

For the second half of the lemma, suppose k is any integer. We must show that gk = gr

for some r ∈ {0, 1, 2, . . . ,m − 1}. By the division algorithm, we can write k = mq + r, where
r ∈ {0, 1, 2, . . . ,m− 1}. Then

gk = gmq+r = (gm)qgr = gr,

since gm = e.

Corollary 1. Let G be an abelian group of order n. Then g ∈ G generates G if and only if g
has order n.

Proof. If g has order n, then g0, . . . , gn−1 are n different elements of G. But G only has n
elements, so it must be that these are all the elements of G; thus g generates G. For the other
half of the corollary, suppose that g generates G, and let m be the order of G. Since the powers
of g have exhaust G, we must have m ≥ n. But we can’t have m > n, since otherwise we would
have more than n distinct elements in a group of order n.
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