
Math 75 notes, Lectures 4 and 5

P. Pollack and C. Pomerance

Before we focus on the specific questions raised at the end of the Lecture 3 notes, we shall
discuss some further ramifications of the division algorithm for F [x], where now F is any field,
finite or otherwise. The principal consequence is the following result.

Theorem 1. If F is a field, each nonzero element of F [x] has a unique factorization as a
product of a unit and monic irreducibles.

Of course the uniqueness of the factorization is to be understood with the caveat that
rearranging the factors does not count as a different factorization. There should also be the
understanding that a single unit or monic irreducible is to be considered as a factorization with
just one factor.

Here are some interesting examples. In Q[x] we have

x4 + 4 = (x2 + 2x+ 2)(x2 − 2x+ 2).

(You should check that the two quadratics above are indeed irreducible in Q[x]—do you know
how to do that?) In C[x], we have

x4 + 1 = (x− eiπ/4)(x+ eiπ/4)(x− e3iπ/4)(x+ e3iπ/4).

And in F [x] where F = Z/(2), we have

x32 + 1 = (x+ 1)32.

Why is this unique factorization theorem true? If one remembers the analogous theorem
for the integers, the key step is that if a prime p divides the product ab of two integers a, b,
then p divides a or b. This is used to show that if p1p2 . . . pk is a product of primes equal to
another product of primes q1q2 . . . ql, then the prime p1 divides q1q2 . . . ql, and so by applying
the principle repeatedly, we finally get that p1 | qj for some j, which leads to p1 = qj. This
common factor is then cancelled from the two equal products of primes, and continuing one
deduces that the two lists of primes involved are identical up to order. So let us carefully prove
the analogous result for irreducible polynomials.

Proposition 1. If F is a field, f ∈ F [x] is irreducible, a, b ∈ F [x], and f | ab, then f | a or
f | b.

Proof. Suppose f - a. Since f is irreducible it follows that the greatest monic common divisor
of f and a is 1. Then by the extended Euclid algorithm, there are polynomials u, v ∈ F [x] with

uf + va = 1.
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We multiply this equation by b, getting

ufb+ vab = b.

Not too exciting yet, but now let’s use that f | ab, so that we can write ab = gf for some
g ∈ F [x]. Thus the last equation can be rewritten as

ufb+ vgf = b,

from which we can see that f | b. Indeed (ub+ vg)f = b.

So, that was not so hard.
One consequence of unique factorization (or Proposition 1) is the following important result.

Proposition 2. If F is a field, f, g are different monic irreducible polynomials in F [x], and
h ∈ F [x] is such that f | h and g | h, then fg | h.

This follows immediately from writing h as a unit times a product of monic irreducibles
and noticing that both f and g must appear in this product. But here is another proof using
only Proposition 1: Since f | h, we may write h = uf for some polynomial u ∈ F [x]. But the
irreducible g divides h = uf and it does not divide f , since f is a monic irreducible not equal
to the monic irreducible g. So, by Proposition 1, g | u, so that u = vg for some v ∈ F [x]. Thus,
h = uf = vgf , so we see that fg | h.

Here’s another important consequence of the division algorithm.

Theorem 2. Suppose F is a subfield of the field K (that is, F is a subset of K closed under the
plus and times of K and such that F is actually a field with these operations). Say α ∈ K is such
that there is some nonzero f ∈ F [x] with f(α) = 0. Then the polynomial f0 with this property
of smallest degree is irreducible, and any polynomial f ∈ F [x] with f(α) = 0 is divisible by f0.
In particular, there is a unique monic irreducible polynomial (called the minimum polynomial
of α) in F [x] which has α as a root.

Proof. We first show f0 is irreducible. If not, then f0 = uv, where u, v ∈ F [x] have smaller
degrees than deg(f0). We have

0 = f0(α) = u(α)v(α).

But, since u, v have degrees smaller than deg(f0), by the definition of f0, we have u(α) and
v(α) both nonzero. So, the equation just displayed cannot occur (compare with problem 3a on
hw 1). Hence f0 must be irreducible. To see the second part, let f be any polynomial in F [x]
with f(α) = 0. We divide f0 into f getting a quotient and a remainder:

f = qf0 + r, r = 0 or deg(r) < deg(f0).

We then evaluate both sides at α, getting

f(α) = q(α)f0(α) + r(α).

But f(α) and f0(α) are both 0, so the equation simplifies to r(α) = 0. But then, by the
definition of f0, it must be that r is the zero polynomial, that is, f0 | f .
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Here’s a message to those students who have had advanced algebra: The way this last result
is viewed is as follows. We have a ring homomorphism from F [x] into the field K given by
replacing x with α. Since the range of this homomorphism is an integral domain, the kernel
must be a prime ideal, and so must be of the form (f0) for some irreducible polynomial f0 (since
the hypothesis says the kernel is not just 0).

Back to finite fields

With these general tools we can begin in earnest our classification of finite fields. Our first
result is already known to you as Fermat’s little theorem in the case F = Z/(p), with p prime,
and is a consequence of Lagrange’s theorem for finite groups (for those who have had group
theory).

Theorem 3. If F is a field with q elements, then αq = α for all α ∈ F .

Proof. The result is true for α = 0, so take some α ∈ F with α 6= 0. Consider the linear
polynomial αx. This can be viewed as a function from F to F , and note that this function is
one-to-one (injective). Indeed, if αβ1 = αβ2, then multiplying both sides by α−1 gives us that
β1 = β2. It is also onto (surjective), since if γ ∈ F is arbitrary, note that α−1γ ∈ F , and α
times this is γ. (Or, one could note that any one-to-one function on a finite set to itself has to
be onto.) Since the function αx takes 0 to 0, it follows that by removing 0 from F , the function
is still one-to-one and onto (a bijection). In particular (where we use the notation F ∗ to denote
the set of nonzero elements of F ), ∏

β∈F ∗

β =
∏
β∈F ∗

(αβ). (1)

(Note that the
∏

notation is just like
∑

, but you multiply the terms instead of add them.) Do
you believe this equation? The left side of (1) is the product of all of the elements of F ∗. But
the elements αβ also run over all the elements of F ∗ as β does, since we’ve seen the function
αx is one-to-one and onto. Since multiplication is commutative and associative, it follows that
the two products are equal, as asserted.

Now let’s say γ is this common value in (1), and rewrite the right side of (1) as

αq−1
∏
β∈F ∗

β = αq−1γ.

Thus, γ = αq−1γ, and so multiplying by

γ−1 =
∏
β∈F ∗

β−1,

we get αq−1 = 1. Multiplying by α gets us αq = α, which is what we wanted.
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Corollary 1. If F is a finite field with q elements, then the polynomial xq−x factors completely
over F , in particular,

xq − x =
∏
β∈F

(x− β).

Proof. It follows from Theorem 3 that each element β ∈ F is a root of xq − x. But x− β is the
minimum polynomial of β, so that by Theorem 2, each x−β | xq−x. And so, by Proposition 2,
we have that the product

∏
β∈F (x − β) | xq − x. But this product has degree q and is monic,

just as xq − x is. Thus, they are equal.

We are now ready to prove a wonderful consequence of the results in this lecture and the
prior lectures.

Theorem 4. If F is a finite field with q elements and f ∈ F [x] is monic irreducible of degree
d, then

f(x) | xqd − x.
Proof. Say f(x) = cdx

d + cdx
d−1 + · · · + c0, where each coefficient ci ∈ F and cd 6= 0. Let

K denote the finite field F [x]/(f). Then K has qd elements. Further, we may view F as a
subfield of K, since the equivalence classes [c] in F [x]/(f), where c ∈ F , form a subset of the
field K that is closed under the operations of K and is really identical to the field F except
that brackets appear around each element. Well, hey, it is only notationally different, so it
is perfectly justified to view F as a subfield of K. In particular, by putting brackets on the
coefficients and using a new letter for the variable:

[cd]t
d + [cd−1]t

d−1 + · · ·+ [c0],

we may now think of f as a polynomial in K[t] with coefficients in the subfield that we’ve
identified with F . We use a new variable, since now the letter “x” is identified with the specific
equivalence class [x] of K. Call this special equivalence class α, so α = [x] in K. Since
[ab] = [a][b] and [a] + [b] = [a+ b], we have

f(α) = f([x]) = [cd][x]d + [cd−1][x]d−1 + · · ·+ [c0] = [cdx
d + cd−1x

d−1 + · · ·+ c0] = [f(x)].

But in K = F [x]/(f), we have [f(x)] = [0]. We conclude that α is a root of f . Thus, by
Theorem 2, for any polynomial g ∈ F [x], if g(α) = 0, then f | g. But by Theorem 3, α is a
root of xq

d − x. Thus, f(x) | xqd − x, and we are done.

Here is a consequence of what we have been doing that really underlines an important
property of finite fields.

Corollary 2. If F is a finite field and f ∈ F [x] is a monic irreducible polynomial, then over
the field K = F [x]/(f), the polynomial f factors completely into monic degree-1 polynomials.

Proof. Say F has q elements and f has degree d. By Theorem 4 that f(x) | xqd − x. But by
Corollary 1, xq

d−x factors completely into linear factors over K. Thus, by unique factorization
of polynomials with coefficients in the field K, we have that f also factors completely into linear
polynomials over K.
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