Math 75 – Homework #8 osted May 15, 2008: due Monday, May 10, 200

posted May 15, 2008; due Monday, May 19, 2008

Exercises

- 1. Prove that there is a sequence of Reed–Solomon codes RS(k, t) along which both the rate and minimum relative distance tend to the limit 1/2.
- 2. In the May 12 lecture notes, one can find the following claim: for the code $\operatorname{BCH}(k,t)$, if $p_{2i-1}(x) = p_{2j-1}(x)$ with i < j, then $(2i-1)(2j-1) > 2^k$. (Here $p_l(x)$ denotes the minimal polynomial of α^l , where α is a fixed generator of $\mathbb{F}_{2^k}^{\times}$.) Assuming this claim, prove that $\operatorname{BCH}(k,t)$ has rank n-kt for all integers $1 \leq 2t \leq 2^{k/2}$. (This generalizes Exercise 14.2 from the last assignment when $k \geq 4$.)
- 3. Do Exercise 18.1 and 18.7–18.9.
- 4. Extra credit: Prove the claim referred to in Exercise 2 above.