Math 75 - Homework \#8

posted May 15, 2008; due Monday, May 19, 2008

Exercises

1. Prove that there is a sequence of Reed-Solomon codes $\mathrm{RS}(k, t)$ along which both the rate and minimum relative distance tend to the limit $1 / 2$.
2. In the May 12 lecture notes, one can find the following claim: for the code $\mathrm{BCH}(k, t)$, if $p_{2 i-1}(x)=p_{2 j-1}(x)$ with $i<j$, then $(2 i-1)(2 j-1)>2^{k}$. (Here $p_{l}(x)$ denotes the minimal polynomial of α^{l}, where α is a fixed generator of $\mathbb{F}_{2^{k}}^{\times}$.) Assuming this claim, prove that $\mathrm{BCH}(k, t)$ has rank $n-k t$ for all integers $1 \leq 2 t \leq 2^{k / 2}$. (This generalizes Exercise 14.2 from the last assignment when $k \geq 4$.)
3. Do Exercise 18.1 and 18.7-18.9.
4. Extra credit: Prove the claim referred to in Exercise 2 above.
