Math 75 – Homework #4 posted April 18, 2008; due Monday, April 21, 2008

Exercises

1. Show that if q is an integer at least 2, then

$$\frac{1}{d}q^d - \frac{2}{d}q^{d/2} ~\sim~ \frac{1}{d}q^d \quad \text{as } d \to \infty,$$

where we say $u(d) \sim v(d)$ as $d \to \infty$ if $\lim_{d\to\infty} u(d)/v(d) = 1$.

- 2. Give a careful proof, citing the relevant results from the class lecture notes, that $x^{q^d} x$ is squarefree over a field with q elements if there is an irreducible polynomial over the field of degree d. (In particular, this almost follows from Corollary 2 in Lectures 4&5, so complete the proof for this exercise using other results from those notes. This problem was also discussed in class on April 14.)
- 3. The proof of Theorem 2 in the Lecture 9 notes gives a way of listing all generators for F^{\times} if you can find one generator. Construct a finite field with 16 elements, find one generator for the multiplicative group, and then find all the generators.
- 4. Show that the additive group of a finite field is cyclic if and only if the number of elements in the field is prime. (Note: a group is called *cyclic* if it has a generator.)
- 5. Decide whether or not the two fields \mathbb{R} and \mathbb{C} (the real numbers and complex numbers, respectively) are isomorphic. If they are isomorphic, give an isomorphism between them. If they are not isomorphic, prove that no isomorphism is possible.
- 6. Let $F = \mathbb{Z}/(2)$. Set $K = F[x]/(x^3 + x + 1)$ and $L = F[x]/(x^3 + x^2 + 1)$. Then both K and L are 8-element fields, so must be isomorphic, by the main result of Lecture 10. Use the proof of that result to write down an explicit map $\phi: K \to L$ which is an isomorphism.
- 7. If p is a prime and d is a positive integer, show that for each positive divisor j of d there is a unique subfield of \mathbb{F}_{p^d} isomorphic to \mathbb{F}_{p^j} and that \mathbb{F}_{p^d} has no other subfields.