Math 75 - Homework \#2
posted April 4, 2008; due Monday, April 7, 2008

Exercises

1. Suppose F is a field, $f \in F[x]$ and $\beta \in F$. Show that $x-\beta \mid f(x)$ in $F[x]$ if and only if $f(\beta)=0$.
2. Suppose F is a field, $f \in F[x]$ and $\operatorname{deg}(f)=d$. Show that f has at most d roots in F.
3. Show that the last exercise need not hold if F is not a field, by considering the nonfield $R=\mathbf{Z} /(8)$ and the polynomial $x^{2}-1$ in $R[x]$.
4. Let $F=\mathbf{Z} /(2)$. Find all irreducible polynomials in $F[x]$ of degrees $1,2,3$, and 4.
5. Construct a finite field with 9 elements, by using the polynomial $x^{2}+1 \in$ $(\mathbf{Z} /(3))[x]$. Write a multiplication table for the field.
6. In a finite group G with operation \circ, the order of an element g is the least positive integer k for which $g \circ g \circ \cdots \circ g$ (with k factors of g here) is the group identity. For example, in the additive group $\mathbf{Z} /(6)$, the order of 1 is 6 , the order of 2 is 3 , the order of 4 is also 3 , etc. Another example: in the multiplicative group of the finite field $\mathbf{Z} /(5)$, the order of 1 is 1 , the order of 2 is 4 , etc. In the multiplicative group of the finite field with 9 elements that you constructed in the previous exercise, find the order of each of the 8 elements.
7. Show that every finite field K with 4 elements is isomorphic to $F[x] /\left(x^{2}+\right.$ $x+1)$, where $F=\mathbf{Z} /(2)$. In other words, it is possible to relabel the elements of K with the symbols ' $[0]^{\prime},{ }^{\prime}[1]^{\prime},{ }^{\prime}[x]^{\prime},{ }^{\prime}[x+1]^{\prime}$ to make the addition and multiplication tables in K simultaneously coincide with the addition and multiplication tables for $F[x] /\left(x^{2}+x+1\right)$, shown on the next page.
8. Let p be a prime, and let $F=\mathbf{Z} /(p)$. We have seen that in $F[x]$ we have the identity

$$
x^{p}-x=x(x-1)(x-2) \cdots(x-(p-1)) .
$$

Use this to prove Wilson's theorem from elementary number theory:

$$
1 \cdot 2 \cdot 3 \cdots(p-1)=-1 \quad \text { in } \mathbf{Z} /(p)
$$

+	$[0]$	$[1]$	$[x]$	$[x+1]$
$[0]$	$[0]$	$[1]$	$[x]$	$[x+1]$
$[1]$	$[1]$	$[0]$	$[x+1]$	$[x]$
$[x]$	$[x]$	$[x+1]$	$[0]$	$[1]$
$[x+1]$	$[x+1]$	$[x]$	$[1]$	$[0]$

Table 1: Addition table for $F[x] /\left(x^{2}+x+1\right)$, where $F=\mathbf{Z} /(2)$.

\cdot	$[0]$	$[1]$	$[x]$	$[x+1]$
$[0]$	$[0]$	$[0]$	$[0]$	$[0]$
$[1]$	$[0]$	$[1]$	$[x]$	$[x+1]$
$[x]$	$[0]$	$[x]$	$[x+1]$	$[1]$
$[x+1]$	$[0]$	$[x+1]$	$[1]$	$[x]$

Table 2: Multiplication table for $F[x] /\left(x^{2}+x+1\right)$, where $F=\mathbf{Z} /(2)$.

