${\rm Math}\,\, 75-{\rm Homework}\,\, \#2$

posted April 4, 2008; due Monday, April 7, 2008

Exercises

- 1. Suppose F is a field, $f \in F[x]$ and $\beta \in F$. Show that $x \beta \mid f(x)$ in F[x] if and only if $f(\beta) = 0$.
- 2. Suppose F is a field, $f \in F[x]$ and $\deg(f) = d$. Show that f has at most d roots in F.
- 3. Show that the last exercise need not hold if F is not a field, by considering the nonfield $R = \mathbb{Z}/(8)$ and the polynomial $x^2 1$ in R[x].
- 4. Let $F = \mathbf{Z}/(2)$. Find all irreducible polynomials in F[x] of degrees 1, 2, 3, and 4.
- 5. Construct a finite field with 9 elements, by using the polynomial $x^2 + 1 \in (\mathbb{Z}/(3))[x]$. Write a multiplication table for the field.
- 6. In a finite group G with operation \circ , the order of an element g is the least positive integer k for which $g \circ g \circ \cdots \circ g$ (with k factors of g here) is the group identity. For example, in the additive group $\mathbf{Z}/(6)$, the order of 1 is 6, the order of 2 is 3, the order of 4 is also 3, etc. Another example: in the multiplicative group of the finite field $\mathbf{Z}/(5)$, the order of 1 is 1, the order of 2 is 4, etc. In the multiplicative group of the finite field with 9 elements that you constructed in the previous exercise, find the order of each of the 8 elements.
- 7. Show that every finite field K with 4 elements is *isomorphic* to $F[x]/(x^2 + x + 1)$, where $F = \mathbb{Z}/(2)$. In other words, it is possible to relabel the elements of K with the symbols '[0]', '[1]', '[x]', '[x + 1]' to make the addition and multiplication tables in K simultaneously coincide with the addition and multiplication tables for $F[x]/(x^2 + x + 1)$, shown on the next page.
- 8. Let p be a prime, and let $F = \mathbf{Z}/(p)$. We have seen that in F[x] we have the identity

$$x^{p} - x = x(x - 1)(x - 2) \cdots (x - (p - 1)).$$

Use this to prove *Wilson's theorem* from elementary number theory:

$$1 \cdot 2 \cdot 3 \cdots (p-1) = -1$$
 in $\mathbf{Z}/(p)$.

+	[0]	[1]	[x]	[x + 1]
[0]	[0]	[1]	[x]	[x+1]
[1]	[1]	[0]	[x + 1]	[x]
[x]	[x]	[x + 1]	[0]	[1]
[x + 1]	[x + 1]	[x]	[1]	[0]

Table 1: Addition table for $F[x]/(x^2 + x + 1)$, where $F = \mathbf{Z}/(2)$.

•	[0]	[1]	[x]	[x + 1]
[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[x]	[x + 1]
[x]	[0]	[x]	[x+1]	[1]
[x + 1]	[0]	[x + 1]	[1]	[x]

Table 2: Multiplication table for $F[x]/(x^2 + x + 1)$, where $F = \mathbf{Z}/(2)$.