Math 73/103 Midterm

1. (15) Give precise statements (no proofs necessary on this problem) of Littlewood's Three Principles:
(a) Every Lebesgue measurable set is almost a disjoint union of intervals.
(b) Every sequence of Lebesgue measurable functions that converges almost everywhere is nearly uniformly convergent.
(c) Every Lebesgue measurable function is nearly continuous.
2. Let $(\mathbf{R}, \mathfrak{M}, m)$ be Lebesgue measure. Recall that $E \in \mathfrak{M}$ if and only if $E+y \in \mathfrak{M}$ for all $y \in \mathbf{R}$, and that $m(E)=m(E+y)$.
(a) Let $f \in \mathcal{L}^{1}(m)$ and $y \in \mathbf{R}$. Define $g(x)=f(x-y)$. Show that $g \in \mathcal{L}^{1}(m)$ and that

$$
\int_{\mathbf{R}} f(x) d m(x)=\int_{\mathbf{R}} f(x-y) d m(x)
$$

(b) If $f \in \mathcal{L}^{1}(m)$, let $\lambda_{y}(f) \in \mathcal{L}^{1}(m)$ be given by $\lambda_{y}(f)(x)=f(x-y)$. Show that $y \mapsto \lambda_{y}(f)$ is continuous from \mathbf{R} to $L^{1}(m)$ in the sense that if $y_{n} \rightarrow y$ in \mathbf{R}, then $\left\|\lambda_{y_{n}}(f)-\lambda_{y}(f)\right\|_{1} \rightarrow 0$.
(Hint: in part (a) start with characteristic functions. In part (b), you can reduce to the case where $y=0$, and the conclusion is not so hard if f is continuous and vanishes off a bounded interval.)
3. Recall that if X is a topological space, then $\mathfrak{B}(X)$ is the σ-algebra of Borel sets in X. Show that $\mathfrak{B}\left(\mathbf{R}^{2}\right)=\mathfrak{B}(\mathbf{R}) \otimes \mathfrak{B}(\mathbf{R})$.
4. Suppose that f and g are functions from \mathbf{R} to \mathbf{R} with f Lebesgue measurable and g Borel. Which of $g \circ f$ and $f \circ g$ must be Lebesgue measurable? Why? (You need not deal with the other case.)
5. Suppose that $f \in \mathcal{L}^{1}(\mathbf{R}, \mathfrak{M}, m)$ and that f is also continuous. Is it necessarily true that $\lim _{x \rightarrow \infty} f(x)=0$?
6. Carefully state the Monotone Convergence Theorem and Fatou's Lemma for non-negative functions. What happens if drop the hypothesis that each $f_{n} \geq 0$? Justify your assertions.
7. Suppose that $f: \mathbf{R} \rightarrow \mathbf{R}$ is Lebesgue measurable.
(a) Show that $F:\left(\mathbf{R}^{2}, \mathfrak{M} \otimes \mathfrak{M}\right) \rightarrow\left(\mathbf{R}^{2}, \mathfrak{B}\left(\mathbf{R}^{2}\right)\right)$ given by $F(x, y)=(f(x), y)$ is measurable. (This just means that $F^{-1}(V) \in \mathfrak{M} \otimes \mathfrak{M}$ when V is open in \mathbf{R}^{2}.)
(b) Show that

$$
G(f)=\left\{(x, f(x)) \in \mathbf{R}^{2}: x \in \mathbf{R}\right\}
$$

is in $\mathfrak{M} \otimes \mathfrak{M}$.
(c) Show that for almost all y,

$$
m(\{x \in \mathbf{R}: f(x)=y\})=0
$$

(Hint: all these parts are connected. Any if you were to use something like Tonelli or Fubini's Theorem, you should carefully explain how.)

