Second Homework Assignment Math 73/103 Due Wednesday, October 19th

1. Page 32 of the text, problem #6. (Note that we have already shown that \mathfrak{M} is a σ -algebra so there is no need to show it again.)

- 2. Page 32 of the text, problem #7.
- 3. Page 32 of the text, problem #10.
- 4. Page 32 of the text, problem #12. (This is easy if f is bounded.)

5. Suppose that Y is a topological space and that \mathfrak{M} is a σ -algebra in Y containing all the Borel sets. Suppose in addition, μ is a measure on (Y, \mathfrak{M}) such that for all $E \in \mathfrak{M}$ we have

$$\mu(E) = \inf\{\mu(V) : V \text{ is open and } E \subset V\}.$$
(1)

Suppose also that

$$Y = \bigcup_{n=1}^{\infty} Y_n \quad \text{with } \mu(Y_n) < \infty \text{ for all } n \ge 1.$$
(2)

In \$25 words, μ is a σ -finite outer regular measure on (Y, \mathfrak{M}) .

- (a) Show that Lebesgue measure m is a σ -finite outer regular measure on $(\mathbf{R}, \mathfrak{M})$.
- (b) Suppose E is a μ -measurable subset of Y.
 - (i) Given $\epsilon > 0$, show that there is an open set $V \subset Y$ and a closed set $F \subset Y$ such that $F \subset E \subset V$ and $\mu(V \setminus F) < \epsilon$.
 - (ii) Show that there is a G_{δ} -set $G \subset Y$ and a F_{σ} -set $A \subset Y$ such that $A \subset E \subset G$ and $\mu(G \setminus A) = 0$.
- (c) Argue that $(\mathbf{R}, \mathfrak{M}, m)$ is the completion of the restriction of Lebesgue measure to the Borel sets in \mathbf{R} .

6. Let *m* be Lebesgue measure on **R** and suppose that *E* is a set of finite measure. Given $\epsilon > 0$, show that there is a finite *disjoint* union *F* of open intervals such that $m(E \triangle F) < \epsilon$ where $E \triangle F := (E \setminus F) \cup (F \setminus E)$ is the symmetric difference. (This illustrates the first of Littlewood's three principles: "Every Lebesgue measurable set is nearly a disjoint union of open intervals".)

- 7. Let (X, \mathfrak{M}, μ) be a measure space, and let $(X, \mathfrak{M}_0, \mu_0)$ be its completion.
 - (a) If $f: X \to \mathbf{C}$ is μ_0 -measurable, show that there is a μ -measurable function $g: X \to \mathbf{C}$ such that f = g a.e. $[\mu_0]$.
 - (b) In part (a), is there necessarily a μ -null set N such that f(x) = g(x) for all $x \notin N$?
 - (c) What does this result say about Lebesgue measurable functions and Borel functions on \mathbf{R} ? (Compare with problem #14 on page 59 of the text.)

8. Suppose that (X, \mathfrak{M}, μ) is a measure space. Recall that $E \in \mathfrak{M}$ is called σ -finite if E is the countable union of sets of finite measure. Let $f \in \mathcal{L}^1(\mu)$.

- (a) Show that $\{x \in X : f(x) \neq 0\}$ is σ -finite.
- (b) Suppose that $f \ge 0$. Show that there are (measurable) simple functions φ_n such that $\varphi_n \nearrow f$ everywhere and there is a single σ -finite set outside of which the φ_n vanish.
- (c) Given $\epsilon > 0$ show that there is simple function such that

$$\int_X |f - \varphi| \, d\mu < \epsilon$$

(d) If $(X, \mathfrak{M}, \mu) = (\mathbf{R}, \mathfrak{M}, m)$ is Lebesgue measure, show that we can take the simple function φ in part (c) to be a step function — that is, a finite linear combination of characteristic functions of *intervals*.