Math 73/103: Homework on the Cauchy-Riemann Equations Due TBA

1. Suppose that Ω is a region in \mathbf{C}, and that $f \in H(\Omega)$. Show that if $f^{\prime}(z)=0$ for all $z \in \Omega$, then f is constant.

Let Ω be a domain in \mathbf{C} and assume that $f: \Omega \rightarrow \mathbf{C}$ is a function. Of course, we can view Ω as an open subset of \mathbf{R}^{2} and define $u, v: \Omega \rightarrow \mathbf{R}$ by

$$
u(x, y):=\operatorname{Re}(f(x+i y)) \quad \text { and } \quad v(x, y)=\operatorname{Im}(f(x+i y))
$$

We say that the Cauchy-Riemann Equations hold at $z_{0}=x_{0}+i y_{0}$ if the partial derivatives of u and v exist at $\left(x_{0}, y_{0}\right)$ and

$$
\begin{equation*}
u_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right) \quad \text { and } \quad u_{y}\left(x_{0}, y_{0}\right)=-v_{x}\left(x_{0}, y_{0}\right) . \tag{CR}
\end{equation*}
$$

We often abuse notation slightly, and say that (CR) amounts to $f_{y}\left(z_{0}\right)=i f_{x}\left(z_{0}\right)$. (Just to be specific, $f_{x}\left(x_{0}+i y_{0}\right):=u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)$. $)$
2. Suppose that $f^{\prime}\left(z_{0}\right)$ exists. Show that

$$
\begin{equation*}
f_{x}\left(z_{0}\right)=f^{\prime}\left(z_{0}\right)=-i f_{y}\left(z_{0}\right) . \tag{1}
\end{equation*}
$$

Conclude that the Cauchy-Riemann equations hold at z_{0} whenever $f^{\prime}\left(z_{0}\right)$ exists. Verify (1) when $f(z)=z^{2}$.
3. Suppose that Ω is a region and $f \in H(\Omega)$. Show that if f is real-valued in Ω, then f is constant.
4. Suppose that Ω is a region and $f \in H(\Omega)$. Suppose that $z \mapsto|f(z)|$ is constant on Ω. Show that f must be constant. (Consider $|f(z)|^{2}$.)

We let f, u, v and Ω be as above. Define

$$
F: \Omega \subset \mathbf{R}^{2} \rightarrow \mathbf{R}^{2} \quad \text { by } \quad F(x, y)=(u(x, y), v(x, y))
$$

Pretend that you remember that F is differentiable at $\left(x_{0}, y_{0}\right) \in \Omega$ if there is a linear function $L: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ such that

$$
\lim _{(h, k) \rightarrow(0,0)} \frac{\left\|F\left(x_{0}+h, y_{0}+k\right)-F\left(x_{0}, y_{0}\right)-L(h, k)\right\|}{\|(h, k)\|}=0
$$

in which case, the partials of u and v must exist and L is given by the Jacobian Matrix

$$
[L]=\left(\begin{array}{ll}
u_{x}\left(x_{0}, y_{0}\right) & u_{y}\left(x_{0}, y_{0}\right) \\
v_{x}\left(x_{0}, y_{0}\right) & v_{y}\left(x_{0}, y_{0}\right)
\end{array}\right)
$$

(Of course, here $\|(x, y)\|=\sqrt{x^{2}+y^{2}}=|x+i y|$.)
5. Let f, F, u, v and Ω be as above. Let $z_{0}=x_{0}+i y_{0} \in \Omega$. Show that $f^{\prime}\left(z_{0}\right)$ exists if and only if the Cauchy-Riemann equations hold at z_{0} and F is differentiable at $\left(x_{0}, y_{0}\right)$. (Hint: if we let $z=h+i k$ and if T is given by the matrix

$$
[T]=\left(\begin{array}{rr}
u_{x}\left(x_{0}, y_{0}\right) & -v_{x}\left(x_{0}, y_{0}\right) \\
v_{x}\left(x_{0}, y_{0}\right) & u_{x}\left(x_{0}, y_{0}\right)
\end{array}\right)
$$

then

$$
\left\|F\left(x_{0}+h, y_{0}+k\right)-F\left(x_{0}, y_{0}\right)-T(h, k)\right\|=\left|f\left(z+z_{0}\right)-f\left(z_{0}\right)-\omega z\right|,
$$

where $\omega=u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)=f_{x}\left(z_{0}\right)$. Then remember (1).)
Problem \#5 has an important Corollary. We learn in multivariable calculus, that F is differentiable at $\left(x_{0}, y_{0}\right)$ if the partial derivatives of u and v exist in a neighborhood of (x_{0}, y_{0}) and are continuous at $\left(x_{0}, y_{0}\right)$. Hence we get as a Corollary of problem \#5, with f, u and v defined as above, that if u and v have continuous partial derivatives in a neighborhood of $\left(x_{0}, y_{0}\right)$ and if the Cauchy-Riemann equations hold at z_{0}, then $f^{\prime}\left(z_{0}\right)$ exists. Use this observation in problem $\# 6$.
6. Define $\exp : \mathbf{C} \rightarrow \mathbf{C}$ by $\exp (x+i y)=e^{x}(\cos (y)+i \sin (y))$. Show that $\exp \in H(\mathbf{C})$ and $\exp ^{\prime}(z)=\exp (z)$ for all $z \in \mathbf{C}$.

