Math 71

Homework 9 - practice problems
p301: \#1 Let F be a field, and $f(x) \in F[x]$ a polynomial of degree $n \geq 1$. Let $g \mapsto \bar{g}$ denote the reduction homomorphism $F[x] \rightarrow F[x] /(f)$. Prove that for each \bar{g} there exists a unique polynomial $g_{0} \in F[x]$ with degree $\leq n-1$ so that $\bar{g}=\bar{g}_{0}$. Show that this means that $F[x] /(f)$ is a vector space over F with basis $\left\{\overline{1}, \bar{x}, \ldots, \overline{x^{n-1}}\right\}$.
p301/311 Let F be a finite field with q elements, and $f \in F[x]$ of degree $n \geq 1$.
(a) Show that $F[x] /(f)$ is a ring with q^{n} elements.
(b) Show that $F[x] /(f)$ is a field with q^{n} elements iff f is irreducible in $F[x]$.
(c) Use this idea to construct fields with 9 and 49 elements.
p301: \#4 Let F be a finite field. Show that $F[x]$ contains infinitely many primes.
$\mathrm{pXXX}: \# \mathrm{n}$ Find all ideals in $\mathbb{Q}[x]$ which contain $\left(x^{4}-1\right)$. Identify those which are prime, maximal.
p311: \# 1 Irreducibility of polynomials. Determine whether or not the polynomials below are irreducible. If not, factor them as a product of irreducibles. \mathbb{F}_{p} is the field with p elements.
(a) $x^{2}+x+1$ in $\mathbb{F}_{2}[x]$.
(b) $x^{3}+x+1$ in $\mathbb{F}_{3}[x]$.
(c) $x^{4}+1=x^{4}-4$ in $\mathbb{F}_{5}[x]$
(d) $x^{4}+10 x^{2}+1$ in $\mathbb{Q}[x]$
p311: $\# 3$ Show that the polynomial $(x-1)(x-2) \cdots(x-n)-1$ is irreducible over \mathbb{Z} for all $n \geq 1$. Hint: If the polynomial factors, consider the values of the factors at $x=1,2, \ldots, n$.
p311: \#11 Prove that $x^{2}+y^{2}-1$ is irreducible in $\mathbb{Q}[x, y]$.

