Math 71

Homework 9 — practice problems

- p301: #1 Let F be a field, and $f(x) \in F[x]$ a polynomial of degree $n \ge 1$. Let $g \mapsto \overline{g}$ denote the reduction homomorphism $F[x] \to F[x]/(f)$. Prove that for each \overline{g} there exists a unique polynomial $g_0 \in F[x]$ with degree $\le n-1$ so that $\overline{g} = \overline{g}_0$. Show that this means that F[x]/(f) is a vector space over F with basis $\{\overline{1}, \overline{x}, \ldots, \overline{x^{n-1}}\}$.
- p301/311 Let F be a finite field with q elements, and $f \in F[x]$ of degree $n \ge 1$.
 - (a) Show that F[x]/(f) is a ring with q^n elements.
 - (b) Show that F[x]/(f) is a field with q^n elements iff f is irreducible in F[x].
 - (c) Use this idea to construct fields with 9 and 49 elements.
- p301: #4 Let F be a finite field. Show that F[x] contains infinitely many primes.
- pXXX: #n Find all ideals in $\mathbb{Q}[x]$ which contain (x^4-1) . Identify those which are prime, maximal.
- p311: # 1 Irreducibility of polynomials. Determine whether or not the polynomials below are irreducible. If not, factor them as a product of irreducibles. \mathbb{F}_p is the field with p elements.
 - (a) $x^2 + x + 1$ in $\mathbb{F}_2[x]$.
 - (b) $x^3 + x + 1$ in $\mathbb{F}_3[x]$.
 - (c) $x^4 + 1 = x^4 4$ in $\mathbb{F}_5[x]$
 - (d) $x^4 + 10x^2 + 1$ in $\mathbb{Q}[x]$
- p311: #3 Show that the polynomial $(x-1)(x-2)\cdots(x-n)-1$ is irreducible over \mathbb{Z} for all $n \ge 1$. Hint: If the polynomial factors, consider the values of the factors at x = 1, 2, ..., n.
- p311: #11 Prove that $x^2 + y^2 1$ is irreducible in $\mathbb{Q}[x, y]$.