Math 71

Homework 8
pXXX, \#1 Let R be an integral domain and $I \subset R$ an ideal. Let $f \mapsto \bar{f}$ denote the reduction homomorphism $R[x] \rightarrow(R / I)[x]$. For $f \in R[x]$, show that $R[x] /(I, f) \cong(R / I)[x] /(\bar{f})$. Hint: You should verify that there is a natural surjective homomorphism $R[x] \rightarrow$ $(R / I)[x] \rightarrow(R / I)[x] /(\bar{f})$. Give a careful argument to show that the map has the desired kernel.
A standard example is take $f \in \mathbb{Z}[x]$. Then $\mathbb{Z}[x] /(n, f(x)) \cong \mathbb{Z} / n \mathbb{Z}[x] /(\bar{f})$ which gives you information about the ideal (n, f) in $\mathbb{Z}[x]$ in terms of $\mathbb{Z} / n \mathbb{Z}[x] /(\bar{f})$. You will no doubt find other uses.
p298. $\# 5$. Prove that (x, y) and $(x, y, 2)$ are prime ideals in $\mathbb{Z}[x, y]$, but only the latter is maximal.
p298, \#13. Show that the rings $F[x, y] /\left(y^{2}-x\right)$ and $F[x, y] /\left(y^{2}-x^{2}\right)$ are not isomorphic for any field F.
p301, \#3 Let F be a field and x and indeterminate, $f \in F[x]$. Show that $F[x] /(f)$ is a field if and only if f is irreducible in $F[x]$. (Use Proposition 7 in $\S 8.2$)
p301, \#5 If $p(x) \in F[x]$, exhibit all the ideals in $F[x] /(p(x))$ using the factorization of p in $F[x]$.
p301, \#7 Determine all the ideals of the ring $\mathbb{Z}[x] /\left(2, x^{3}+1\right)$.

