Math 71

Homework 6

1. Show that every nonabelian group of order 6 has a nonnormal subgroup of order 2 . Use this to classify all groups of order 6 . Note: This is the exercise you prove to justify the statement we have been using all term, that there are exactly two isomorphism classes of groups of order 6. So do not invoke that result here.
2. Show that for $n \geq 3$ and p an odd prime, that every Sylow p-subgroup of $D_{2 n}$ is cyclic and normal in $D_{2 n}$.
3. List all the Sylow 2-subgroups of S_{4}, and given two of them, find an element σ is S_{4} which conjugates one to the other. Hint: Can you find a permutation τ so that $\tau\left(a_{1} a_{2} \ldots a_{r}\right) \tau^{-1}=\left(b_{1} b_{2} \ldots b_{r}\right)$? Parts of $\S 4.3$ that we did not cover in class have some interesting results!
4. Let G be a group of order $105=3 \cdot 5 \cdot 7$. For each prime p dividing 105 , let H_{p} denote a Sylow p-subgroup of G.

- Show that $n_{5}=1$ or $n_{7}=1$.
- Use that to conclude that $H_{5} H_{7}$ is a normal subgroup of G and that $n_{5}=n_{7}=1$.
- Show that if $n_{3}=1$, then G is cyclic.

5. Determine all the distinct isomorphism classes of abelian groups of order $9801=3^{4} \cdot 11^{2}$. Give two lists, one using elementary divisors and the other using invariant factors.
