MATH 71 - ABSTRACT ALGEBRA
 FALL 2015
 MIDTERM 2 - TAKE-HOME

DUE OCTOBER 30

PROBLEM 1

The goal of this problem is to determine for which values of n there exists a unique group of order n up to isomorphism. In what follows, n is a positive integer with prime decomposition $n=p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}$.

1. (a) Assume n prime. Determine, up to isomorphism, all the groups of order n.
(b) Prove that if $\alpha_{i} \geq 2$ for some $i \in\{1, \ldots, s\}$, then there are at least two non-isomorphic groups of order n. (Think about Klein's group V_{4}.)

From now on, we assume that $\alpha_{i}=1$ for all $i \in\{1, \ldots, s\}$.
2. Recall (without proof) the expression of the Euler Indicator $\varphi(n)$ in that case.
3. Let p and q be distinct prime numbers such that $p \mid(q-1)$.
(a) Prove the existence of a non-abelian group of order $p q$.
(b) Deduce that if all groups of order n are isomorphic, then $n \wedge \varphi(n)=1$.

We shall prove the converse by contradiction. Let n be the smallest integer for which $n \wedge \varphi(n)=1$ and there exists a group G of order n that is not isomorphic to $\mathbb{Z} / n \mathbb{Z}$ (assuming the existence of such integers).
4. (a) Prove that $m \wedge \varphi(m)=1$ for any divisor m of n.
(b) Prove that every proper subgroup and every non-trivial quotient group of G is cyclic.
(c) Deduce that the center of G is trivial. (Hint: consider $G / Z(G)$ and use the Fundamental Theorem.)

A maximal subgroup of a group Γ is a proper subgroup H such that the only subgroups of Γ containing H are H and Γ.
5. Let U be a maximal subgroup of G and $x \neq 1$ in U.
(a) Prove that $U=C_{G}(x)$.
(b) Deduce that any two distinct maximal subgroups of G have trivial intersection.

We admit the following result: every maximal subgroup of G is equal to its own normalizer:

$$
U=N_{G}(U) .
$$

6. Let U be a maximal subgroup, u its order and \mathfrak{U} the union of all conjugates of U in G.
(a) Determine the number of conjugates of U and the order of each such conjugate.
(b) Verify that the conjugates of U are maximal and deduce that \mathfrak{U} contains $n-\frac{n}{u}$ elements different from the identity.
7. Let $x \in G \backslash \mathfrak{U}$. Consider V a maximal subgroup of G containing x. Denote by v its order and by \mathfrak{V} the union of all conjugates of V.
(a) Prove that $\mathfrak{U} \cup \mathfrak{V}$ contains $2 n-\frac{n}{u}-\frac{n}{v}$ elements different from 1.
(b) Compare to the cardinality of $G \backslash\{1\}$ and deduce a contradiction.
8. Conclude.

Problem 2

Let F be a field and consider the groups $G=\mathrm{SL}(2, F)$ and $N=\left\{\left[\begin{array}{cc}1 & t \\ 0 & 1\end{array}\right], t \in F\right\}$.
Let X_{2} denote the set $F^{2} \backslash\{(0,0)\}$, with elements written as column matrices.

1. Is N is normal in G ?
2. Prove that G acts on X_{2} via left matrix multiplication.

For $g \in G$, let $c_{1}(g)$ denote the first column of g.
3. Prove that the map $\varphi: \begin{aligned} G / N & \longrightarrow \mathrm{X}_{2} \\ g N & \longmapsto c_{1}(g)\end{aligned}$ is well-defined.
4. Prove that φ is a G-equivariant bijection.

From now on, assume $n \geq 1$ and let $G=\operatorname{SL}(n+1, F)$, while Y_{n+1} denotes the set of F-valued matrices with $n+1$ rows and n columns.
5. Verify that G acts on Y_{n+1} via left matrix multiplication.
6. Let $x_{0}=\left[\begin{array}{lll} & & \\ I_{n} \\ \hline 0 & \ldots & 0\end{array}\right]$. Determine the group $N=\operatorname{Stab}_{G}\left(x_{0}\right)$.
7. Describe the map b: $\begin{aligned} G & \longrightarrow \mathrm{Y}_{n+1} \\ g & \longmapsto g \cdot x_{0}\end{aligned}$.
8. Prove that G / N is in G-equivariant bijection with the subset X_{n+1} of Y_{n+1} consisting of the elements of rank n.

