MATH 71 - ABSTRACT ALGEBRA FALL 2015 MIDTERM 2

DURATION: 2 HOURS

This examination consists of four independent problems. Treat them in the order of your choosing, starting each problem on a new page. **Every claim** you make must be **fully justified or quoted** as a result studied in class.

Problem 1

The questions in this problem are independent.

1. Let G be a group acting on a finite set X and x_1, \ldots, x_n a family of representatives of all the orbits. Prove that $\#X = \sum_{i=1}^{n} [G : \operatorname{Stab}_G(x_i)].$

2. Let A be a ring. Prove that $0 \times a = 0$ for all $a \in A$.

3. Consider the ring A of functions from \mathbb{R} to \mathbb{R} . For each of the following subsets, determine if it is a subring A. If so, determine if it is an ideal.

- (a) $A_{-3} = \{ f : \mathbb{R} \longrightarrow \mathbb{R} , f(-3) = 0 \}$
- (b) $E = \{ \text{even functions in } A \}$
- (c) $O = \{ \text{odd functions in } A \}$

Problem 2

1. Let *F* be a field. For $a \in F^{\times}$ let $\varphi(a)$ denote the map $\begin{array}{ccc} F & \longrightarrow & F \\ t & \longmapsto & a^2t \end{array}$.

- (a) Prove that $\varphi(a)$ is an automorphism of the additive group (F, +).
- (b) Prove that φ is a group homomorphism from F^{\times} to Aut(F).

2. Prove that $F \rtimes_{\varphi} F^{\times}$ is isomorphic to the subgroup $P = \left\{ \begin{bmatrix} a & b \\ 0 & a^{-1} \end{bmatrix}, a \in F^{\times}, b \in F \right\}$ of SL(2, F).

Problem 3

Let $n \geq 3$. Recall that the alternating group \mathfrak{A}_n is generated by the 3-cycles. A square in a group G is an element of the form $g^2 = g \cdot g$.

- **1.** Prove that every 3-cycle σ in \mathfrak{S}_n is a square. <u>*Hint: compute*</u> σ^4 .
- **2.** Let *H* be the subgroup of \mathfrak{S}_n generated by the squares. Prove that $H = \mathfrak{A}_n$.
- **3.** Let N be a subgroup of index 2 in \mathfrak{S}_n
 - (a) Prove that $\sigma^2 \in N$ for any $\sigma \in \mathfrak{S}_n$.
 - (b) Deduce that $N = \mathfrak{A}_n$.

Problem 4

Let K be the subgroup of SL(2, \mathbb{R}) consisting of matrices of the form $\begin{bmatrix} c & -s \\ s & c \end{bmatrix}$ with $c^2 + s^2 = 1$ and $\mathfrak{g} = \left\{ X = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $\operatorname{Tr}(X) = a + d = 0 \right\}$.

Note that \mathfrak{g} is *not* a subgroup of $SL(2, \mathbb{R})$.

1. Verify that K acts on \mathfrak{g} by $k \cdot X = kXk^{-1}$ where $k \in K$ and $X \in \mathfrak{g}$.

Let $\mathfrak{a} = \left\{ \begin{bmatrix} \alpha & 0 \\ 0 & -\alpha \end{bmatrix}, \alpha \in \mathbb{R} \right\} \subset \mathfrak{g}$. Again, \mathfrak{a} is not a subgroup of $SL(2, \mathbb{R})$.

- **2.** Determine all the elements of the subgroup $N = \{k \in K, k \mathfrak{a} k^{-1} \subset \mathfrak{a}\}$ of K.
- **3.** Determine the subgroup $C = \{k \in K, kXk^{-1} = X \text{ for all } X \in \mathfrak{a}\}$ of N.
- **4.** Prove that N is isomorphic to $\mathbb{Z}/4\mathbb{Z}$ and that N/C is isomorphic to $\mathbb{Z}/2\mathbb{Z}$.