MATH 71 - ABSTRACT ALGEBRA
 FALL 2015
 MIDTERM 2

DURATION: 2 HOURS

This examination consists of four independent problems. Treat them in the order of your choosing, starting each problem on a new page. Every claim you make must be fully justified or quoted as a result studied in class.

Problem 1

The questions in this problem are independent.

1. Let G be a group acting on a finite set X and x_{1}, \ldots, x_{n} a family of representatives of all the orbits. Prove that $\# X=\sum_{i=1}^{n}\left[G: \operatorname{Stab}_{G}\left(x_{i}\right)\right]$.
2. Let A be a ring. Prove that $0 \times a=0$ for all $a \in A$.
3. Consider the ring A of functions from \mathbb{R} to \mathbb{R}. For each of the following subsets, determine if it is a subring A. If so, determine if it is an ideal.
(a) $A_{-3}=\{f: \mathbb{R} \longrightarrow \mathbb{R}, f(-3)=0\}$
(b) $E=\{$ even functions in $A\}$
(c) $O=\{$ odd functions in $A\}$

Problem 2

1. Let F be a field. For $a \in F^{\times}$let $\varphi(a)$ denote the map $\begin{array}{rll}F & \longrightarrow F \\ t & \longmapsto a^{2} t\end{array}$.
(a) Prove that $\varphi(a)$ is an automorphism of the additive group $(F,+)$.
(b) Prove that φ is a group homomorphism from F^{\times}to $\operatorname{Aut}(F)$.
2. Prove that $F \rtimes_{\varphi} F^{\times}$is isomorphic to the subgroup $P=\left\{\left[\begin{array}{cc}a & b \\ 0 & a^{-1}\end{array}\right], a \in F^{\times}, b \in F\right\}$ of $\operatorname{SL}(2, F)$.

Problem 3

Let $n \geq 3$. Recall that the alternating group \mathfrak{A}_{n} is generated by the 3 -cycles. A square in a group G is an element of the form $g^{2}=g \cdot g$.

1. Prove that every 3-cycle σ in \mathfrak{S}_{n} is a square. Hint: compute σ^{4}.
2. Let H be the subgroup of \mathfrak{S}_{n} generated by the squares. Prove that $H=\mathfrak{A}_{n}$.
3. Let N be a subgroup of index 2 in \mathfrak{S}_{n}
(a) Prove that $\sigma^{2} \in N$ for any $\sigma \in \mathfrak{S}_{n}$.
(b) Deduce that $N=\mathfrak{A}_{n}$.

Problem 4

Let K be the subgroup of $\operatorname{SL}(2, \mathbb{R})$ consisting of matrices of the form $\left[\begin{array}{cc}c & -s \\ s & c\end{array}\right]$ with $c^{2}+s^{2}=1$ and

$$
\mathfrak{g}=\left\{X=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], \operatorname{Tr}(X)=a+d=0\right\} .
$$

Note that \mathfrak{g} is not a subgroup of $\operatorname{SL}(2, \mathbb{R})$.

1. Verify that K acts on \mathfrak{g} by $k \cdot X=k X k^{-1}$ where $k \in K$ and $X \in \mathfrak{g}$.

Let $\mathfrak{a}=\left\{\left[\begin{array}{cc}\alpha & 0 \\ 0 & -\alpha\end{array}\right], \alpha \in \mathbb{R}\right\} \subset \mathfrak{g}$. Again, \mathfrak{a} is not a subgroup of $\operatorname{SL}(2, \mathbb{R})$.
2. Determine all the elements of the subgroup $N=\left\{k \in K, k \mathfrak{a} k^{-1} \subset \mathfrak{a}\right\}$ of K.
3. Determine the subgroup $C=\left\{k \in K, k X k^{-1}=X\right.$ for all $\left.X \in \mathfrak{a}\right\}$ of N.
4. Prove that N is isomorphic to $\mathbb{Z} / 4 \mathbb{Z}$ and that N / C is isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$.

