MATH 71 - ABSTRACT ALGEBRA FALL 2015 MIDTERM 1

DURATION: 2 HOURS

This exam consists of 4 independent problems. Treat them in the order of your choosing, starting each problem on a new page.

Every claim you make must be fully justified or quoted as a result studied in class.

Problem 1

1. Let G be a group and H a subgroup. The relation defined on G by

$$x \sim y \Leftrightarrow x^{-1}y \in H$$

is an equivalence relation. For g element of G, describe the class of g.

2. Is \mathfrak{S}_3 cyclic?

- **3.** Find the order of $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 12 & 4 & 1 & 6 & 8 & 11 & 10 & 5 & 7 & 9 & 2 & 3 \end{pmatrix}$ in \mathfrak{S}_{12} .
- 4. Give two non-isomorphic groups of cardinal 8. Explain why they are not isomorphic.
- **5.** Let G, G' be groups and $\varphi \in \text{Hom}(G, G')$. Assume that G is cyclic and φ is surjective. Prove that G' is cyclic.
- **6.** Determine the subgroup of $(\mathbb{Q}_+^{\times}, \times)$ generated by $A = \left\{\frac{1}{p}, p \text{ prime}\right\}$.

Problem 2

Recall that $D_{2n} = \langle r, s \mid r^n = 1, s^2 = 1, rs = sr^{-1} \rangle$.

- **1.** Show that every element of D_{2n} that is not a power of r has order 2.
- **2.** Deduce that every element of D_{2n} is the product of elements of order 2.
- **3.** Let G be a finite group generated by distinct elements a and b, both of order 2. Prove that G is isomorphic to D_{2n} , where n = |ab|.

Hint: prove that $\langle a, b \rangle = \langle a, ab \rangle$

Problem 3

1. Let G_1 and G_2 be groups and consider the product $G = G_1 \times G_2$, with the group law $(x_1, x_2) \cdot (y_1, y_2) = (x_1y_1, x_2y_2).$

Prove that $G_1 \times \{1_{G_2}\} \triangleleft G$ and that the quotient $G/G_1 \times \{1_{G_2}\}$ is isomorphic to G_2 .

2. Let *F* be a field. Consider the following subgroups of SL(2, *F*): $P = \left\{ \begin{bmatrix} a & t \\ 0 & a^{-1} \end{bmatrix}, a \in F^{\times}, t \in F \right\}, \qquad N = \left\{ \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}, t \in F \right\}.$

Prove that $N \triangleleft P$ and that P/N is isomorphic to F^{\times} .

Problem 4

Recall that Aut(G) denotes the set of isomorphisms of a group G onto itself, and that it is a group under composition. Let

Inn(G) = {
$$c_g$$
, $g \in G$ }, where $c_g(x) = gxg^{-1}$ for all $x \in G$.

- **1.** Verify that $c_g \in \operatorname{Aut}(G)$ for all $g \in G$.
- **2.** Prove that Inn(G) is a subgroup of Aut(G).
- **3.** Is Inn(G) normal in Aut(G)?
- **4.** Prove that Inn(G) is isomorphic to a quotient of G.