Math 71 Fall 2015

Homework #5: polynomial rings

- (1) If A is a ring, denote by A[X,Y] the ring of polynomials in two variables with coefficients in A.
 - (a) Is the ideal (X, Y) of $\mathbb{Q}[X, Y]$ principal?
 - (b) Are the ideals (X) and (X,Y) prime in $\mathbb{Q}[X,Y]$? Are they maximal?
 - (c) Are the ideals (X, Y) and (2, X, Y) prime in $\mathbb{Z}[X, Y]$? Are they maximal?
- (2) Let F be a field and $A = F[X, X^2Y, X^3Y^2, \dots, X^nY^{n-1}, \dots] \subset F[X, Y]$.
 - (a) Prove that A consists of all polynomials of the form $a_0 + \sum a_{k,\ell} X^k Y^\ell$ with $a_{k,\ell} = 0$ if $1 \le k \le \ell$.
 - (b) Prove that A and F[X,Y] have the same field of fractions.
 - (c) Prove that the ideal $(X, X^2Y, X^3Y^2, ...)$ of A is not finitely generated.
- (3) Let $A = \mathbb{Z} + X\mathbb{Q}[X]$.
 - (a) Prove that A is an integral domain and determine A^{\times} .
 - (b) Show that the irreducibles of in A are prime numbers, opposites of prime numbers and irreducible polynomials in $\mathbb{Q}[X]$ with constant term ± 1 .
 - (c) Are the irreducibles prime?
 - (d) Show that X cannot be written as the product of irreducibles. Is A a UFD?
- (4) Let F be field and P a polynomial of degree $n \geq 1$.
 - (a) Prove that F[X]/(P) is a vector space of dimension n over F.
 - (b) Assume that F is finite, of order q. What is the cardinality of F[X]/(P)?
 - (c) Prove that F[X]/(P) is a field if and only if P is irreducible.