Math 71 Fall 2015

Homework \#4: rings and ideals
(1) Let A be a commutative ring with identity and $A[X]$ the ring of polynomials with coefficients in A.
(a) Prove that (X) is a prime ideal of $A[X]$ if and only if A is an integral domain.
(b) Prove that (X) is maximal if and only if A is a field.
(c) Let I and J be ideals in A and P a prime ideal such that $I J \subset P$. Prove that either I or J is contained in P.
(2) Let A be a commutative ring with identity and consider a polynomial $P \in A[X]$ of degree $n \geq 1$ with leading coefficient 1 .
(a) Verify that every class in $A[X] /(P)$ has a representative in $A[X]$ of degree at most $n-1$.
(b) Let $U, V \in A_{n-1}[X]$ be distinct polynomials. Prove that their images in $A[X] /(P)$ are distinct.
(c) Assume that P can be factored in $A[X]$. Prove that $A[X] /(P)$ has zero divisors.
(d) Assume that $P=X^{n}-a$ where $a \in A$ is nilpotent ${ }^{1}$. Prove that the image of X in $A[X] /(P)$ is nilpotent.
(3) Consider the ring $\mathbb{Z}[i]=\{a+i b, a, b \in \mathbb{Z}\}$.
(a) Prove that every point in the complex plane is at distance strictly less than 1 from an element in $\mathbb{Z}[i]$.
(b) Prove that $\mathbb{Z}[i]$ is a Euclidean domain and determine $\mathbb{Z}[i]^{\times}$.

[^0](4) Let A be a ring with identity and consider the map $\varphi: \mathbb{N} \longrightarrow A$ defined by $\varphi(n)=\underbrace{1+\ldots+1}_{n \text { times }}$.
(a) Prove that φ extends uniquely to a ring homomorphism from \mathbb{Z} to A.
(b) Prove the existence of a non-negative integer κ such that ker $\varphi=\kappa \mathbb{Z}$.

The integer κ of the previous question is called the characteristic of A.
(c) Prove that the characteristic of an integral domain is either 0 or a prime number.
(d) Determine the characteristics of $\mathbb{Q}, \mathbb{Z}[X]$ and $\mathbb{Z} / n \mathbb{Z}[X]$.
(e) Let p be a prime number and A a commutative ring of characteristic p. Prove that $(a+b)^{p}=a^{p}+b^{p}$ in A^{2}.

[^1]
[^0]: ${ }^{1}$ An element a in a ring is said nilpotent if $a^{m}=0$ for some positive integer m.

[^1]: ${ }^{2}$ Be warned: mentioning this result to calculus students may constitute a violation of the Honor Code.

