Math 71 Fall 2015 Homework #4: rings and ideals

- (1) Let A be a commutative ring with identity and A[X] the ring of polynomials with coefficients in A.
 - (a) Prove that (X) is a prime ideal of A[X] if and only if A is an integral domain.
 - (b) Prove that (X) is maximal if and only if A is a field.
 - (c) Let I and J be ideals in A and P a prime ideal such that $IJ \subset P$. Prove that either I or J is contained in P.
- (2) Let A be a commutative ring with identity and consider a polynomial $P \in A[X]$ of degree $n \ge 1$ with leading coefficient 1.
 - (a) Verify that every class in A[X]/(P) has a representative in A[X] of degree at most n-1.
 - (b) Let $U, V \in A_{n-1}[X]$ be distinct polynomials. Prove that their images in A[X]/(P) are distinct.
 - (c) Assume that P can be factored in A[X]. Prove that A[X]/(P) has zero divisors.
 - (d) Assume that $P = X^n a$ where $a \in A$ is nilpotent¹. Prove that the image of X in A[X]/(P) is nilpotent.
- (3) Consider the ring $\mathbb{Z}[i] = \{a + ib, a, b \in \mathbb{Z}\}.$
 - (a) Prove that every point in the complex plane is at distance strictly less than 1 from an element in $\mathbb{Z}[i]$.
 - (b) Prove that $\mathbb{Z}[i]$ is a Euclidean domain and determine $\mathbb{Z}[i]^{\times}$.

¹An element a in a ring is said *nilpotent* if $a^m = 0$ for some positive integer m.

- (4) Let A be a ring with identity and consider the map $\varphi : \mathbb{N} \longrightarrow A$ defined by $\varphi(n) = \underbrace{1 + \ldots + 1}_{n \text{ times}}$.
 - (a) Prove that φ extends uniquely to a ring homomorphism from \mathbb{Z} to A.
 - (b) Prove the existence of a non-negative integer κ such that ker $\varphi = \kappa \mathbb{Z}$.

The integer κ of the previous question is called the *characteristic* of A.

- (c) Prove that the characteristic of an integral domain is either 0 or a prime number.
- (d) Determine the characteristics of \mathbb{Q} , $\mathbb{Z}[X]$ and $\mathbb{Z}/n\mathbb{Z}[X]$.
- (e) Let p be a prime number and A a commutative ring of characteristic p. Prove that $(a + b)^p = a^p + b^p$ in A^2 .

 $^{^{2}}$ Be warned: mentioning this result to calculus students may constitute a violation of the Honor Code.