Math 71 Fall 2015 Homework #2: cyclic groups and quotients

- (1) Recall that an *automorphism* of a group is an isomorphism of the group with itself. The set of automorphisms of a group G is denoted by Aut(G). Let G be a group, H a normal subgroup of G and K a subgroup of H.
 - (a) Assume that $\varphi(K) \subset K$ for any $\varphi \in \operatorname{Aut}(H)$. Is K normal in H?
 - (b) Under the same hypotheses, prove that K is normal in G.
 - (c) Find three groups G, H and K such that $K \triangleleft H$ and $H \triangleleft G$ but K is not normal in G.
- (2) Recall that $\mathbb{R}^{\times} = \mathbb{R} \setminus \{0\}$ and $\mathbb{C}^{\times} = \mathbb{C} \setminus \{0\}$ and consider the multiplicative groups $\mathbb{T} = \{z \in \mathbb{C} , |z| = 1\}$ $\mu_n = \{z \in \mathbb{C} , z^n = 1\}$ $\mu_{\infty} = \{z \in \mathbb{C} , \exists n \in \mathbb{Z}, z^n = 1\}.$
 - (a) Which of these are cyclic?
 - (b) Prove the following isomorphisms:

$$\begin{split} \mathbb{R}/\mathbb{Z} \simeq \mathbb{T} &, \quad \mathbb{C}^{\times}/\mathbb{R}_{+}^{\times} \simeq \mathbb{T} &, \quad \mathbb{C}^{\times}/\mathbb{R}^{\times} \simeq \mathbb{T} \\ \mathbb{T}/\mu_{n} \simeq \mathbb{T} &, \quad \mathbb{C}^{\times}/\mu_{n} \simeq \mathbb{C}^{\times} &, \quad \mathbb{Q}/\mathbb{Z} \simeq \mu_{\infty}. \end{split}$$

- (c) Determine all the finite subgroups of μ_{∞} .
- (3) The *center* of a group G is the set $Z(G) = \{\gamma \in G \mid \forall g \in G, \gamma \cdot g = g \cdot \gamma\}.$
 - (a) Compute the center of your favorite and least favorite non-abelian groups.
 - Let G be a group and H a subgroup such that $H \subset Z(G)$.
 - (b) Verify that $H \lhd G$.
 - (c) Prove that if G/H is cyclic then G is abelian.

- (4) A commutator in a group G is an element of the form $xyx^{-1}y^{-1}$ with $x, y \in G$.
 - (a) Do commutators form a subgroup of G?

Let D(G) be the subgroup of G generated by the commutators.

- (b) Prove that D(G) is normal in G.
- (c) Prove that G/D(G) is abelian.
- (d) Prove that D(G) is the smallest normal subgroup of G with abelian quotient.