Math 71 Fall 2015

Homework \#1: groups, subgroups and morphisms

(1) Let E be the set of matrices of the form $\left[\begin{array}{ll}a & 0 \\ b & 0\end{array}\right]$ with $a \in \mathbb{C}^{\times}$and $b \in \mathbb{C}$.
(a) Prove that matrix multiplication is an associative composition law on E.
(b) Does E have a left identity, that is, an element e such that $e \cdot x=x$ for every $x \in E$? Is it unique? What about right identities?
(c) Does every element in E have a left inverse? A right inverse? Is it unique?
(2) Let $G=\left\{\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] ; \begin{array}{l}a, b, c, d \in \mathbb{Z} \\ a d-b c=1\end{array}\right\}$ and $\alpha=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right], \beta=\left[\begin{array}{cc}0 & 1 \\ -1 & 1\end{array}\right]$.
(a) Verify that G is a subgroup of $\mathrm{GL}(2, \mathbb{R})$ that contains α and β.
(b) Determine the order of α, β and $\alpha \beta$.
(3) All the sets considered below are equipped with their ordinary additive group structures; m and n are positive integers.
(a) Determine all the elements of $\operatorname{Hom}(\mathbb{Q}, \mathbb{Q}), \operatorname{Hom}(\mathbb{Q}, \mathbb{Z})$ and $\operatorname{Hom}(\mathbb{Z} / n \mathbb{Z}, \mathbb{Z})$
(b) Show that $\Gamma=\operatorname{Hom}(\mathbb{Z} / m \mathbb{Z}, \mathbb{Z} / n \mathbb{Z})$ is a group for a law to be determined.
(c) Prove that Γ is isomorphic to $\mathbb{Z} /(m \wedge n) \mathbb{Z}$.
(4) If A and B are subsets of a group G, we denote by $A B$ the set of products $\{a b, a \in A, b \in B\}$. Let H_{1} and H_{2} be subgroups of G.
(a) Find a necessary and sufficient condition for $H_{1} H_{2}$ to be a subgroup of G.
(b) Assume that H_{1} and H_{2} are finite and $H_{1} \cap H_{2}=\left\{e_{G}\right\}$. Prove that

$$
\operatorname{Card}\left(H_{1} H_{2}\right)=\operatorname{Card}\left(H_{1}\right) \operatorname{Card}\left(H_{2}\right) .
$$

Hint: construct a bijection between $H_{1} \times H_{2}$ and $H_{1} H_{2}$.

