Math 71 Fall 2015 Homework #1: groups, subgroups and morphisms

- (1) Let *E* be the set of matrices of the form $\begin{bmatrix} a & 0 \\ b & 0 \end{bmatrix}$ with $a \in \mathbb{C}^{\times}$ and $b \in \mathbb{C}$.
 - (a) Prove that matrix multiplication is an associative composition law on E.
 - (b) Does *E* have a *left identity*, that is, an element *e* such that $e \cdot x = x$ for every $x \in E$? Is it unique? What about right identities?
 - (c) Does every element in E have a left inverse? A right inverse? Is it unique?

(2) Let
$$G = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix}; a, b, c, d \in \mathbb{Z} \\ ad - bc = 1 \end{array} \right\}$$
 and $\alpha = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \beta = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix}.$

- (a) Verify that G is a subgroup of $GL(2, \mathbb{R})$ that contains α and β .
- (b) Determine the order of α , β and $\alpha\beta$.
- (3) All the sets considered below are equipped with their ordinary additive group structures; m and n are positive integers.
 - (a) Determine all the elements of $\operatorname{Hom}(\mathbb{Q},\mathbb{Q})$, $\operatorname{Hom}(\mathbb{Q},\mathbb{Z})$ and $\operatorname{Hom}(\mathbb{Z}/n\mathbb{Z},\mathbb{Z})$
 - (b) Show that $\Gamma = \text{Hom}(\mathbb{Z}/m\mathbb{Z}, \mathbb{Z}/n\mathbb{Z})$ is a group for a law to be determined.
 - (c) Prove that Γ is isomorphic to $\mathbb{Z}/(m \wedge n)\mathbb{Z}$.
- (4) If A and B are subsets of a group G, we denote by AB the set of products $\{ab, a \in A, b \in B\}$. Let H_1 and H_2 be subgroups of G.
 - (a) Find a necessary and sufficient condition for H_1H_2 to be a subgroup of G.
 - (b) Assume that H_1 and H_2 are finite and $H_1 \cap H_2 = \{e_G\}$. Prove that $\operatorname{Card}(H_1H_2) = \operatorname{Card}(H_1)\operatorname{Card}(H_2)$. *Hint: construct a bijection between* $H_1 \times H_2$ *and* H_1H_2 .