MATH 71 - ABSTRACT ALGEBRA
 FALL 2015
 FINAL EXAMINATION

DUE NOVEMBER 24

1. Cyclotomic polynomials

For $n \geq 2$, let μ_{n} denote the multiplicative group of $n^{\text {th }}$ roots of 1: $\mu_{n}=\left\{z \in \mathbb{C}, z^{n}=1\right\}$ and Π_{n} the set of generators of μ_{n}. The cyclotomic polynomial of order n is

$$
\Phi_{n}=\prod_{\xi \in \Pi_{n}}(X-\xi)
$$

We recall that the Euler indicator φ satisfies the formula $\sum_{d \mid n} \varphi(d)=n$.

1. Consider the polynomial $P_{n}=\prod_{\xi \in \mu_{n}}(X-\xi)$.
(a) Prove that $P_{n}=X^{n}-1$.
(b) Determine Φ_{p} for p prime.
2. Let $\omega=e^{\frac{2 i \pi}{n}}$ and k an integer such that $0 \leq k \leq n-1$.
(a) Let d be the order of ω^{k} in μ_{n}. Prove that $\omega^{k} \in \Pi_{d}$
(b) Deduce that $X^{n}-1$ divides $\prod_{d \mid n} \Phi_{d}$.
(c) Prove that $\prod_{d \mid n} \Phi_{d}=X^{n}-1$.
3. We will prove by induction that Φ_{n} has integer coefficients.
(a) Verify the result for $n=1$.
(b) Assuming the result true up to $n-1$, find a monic polynomial $P \in \mathbb{Z}[X]$ such that

$$
X^{n}-1=P \Phi_{n}
$$

(c) Prove the existence of polynomials Q and R in $\mathbb{Z}[X]$ with $\operatorname{deg}(R)<\operatorname{deg}(P)$, such that

$$
X^{n}-1=P Q+R .
$$

(d) Prove that the couple (Q, R) is unique and conclude that $\Phi_{n} \in \mathbb{Z}[X]$.

2. Application: proof of Wedderburn's Theorem

We shall prove that every finite division ring is commutative. Let K be a finite division ring. We argue by induction on the cardinality of K.
0. Prove the following result.

Lemma. If A is a finite division ring and F a subring of A that is a field, then A is a finite dimensional vector space over F.

1. Prove that a division ring of cardinality 2 is commutative.

From now on, we assume that every division ring of cardinality $<\# K$ is commutative and that K is noncommutative.
2. Let $\mathcal{Z}=\{x \in K \mid x y=y x \quad$ for all $y \in K\}$ be the center of K and $q=\# \mathcal{Z}$.
(a) Prove that \mathcal{Z} is a subring of K.
(b) Prove the existence of an integer $n \geq 2$ such that $\# K=q^{n}$.
3. For $x \in K$, let $K_{x}=\{y \in K \mid x y=y x\}$.
(a) Verify that either $K_{x}=K$ or K_{x} is a field extension of \mathcal{Z} and a subring of K.
(b) Deduce the existence of a divisor d of n such that $\# K_{x}=q^{d}$.
4. Recall that the multiplicative group $K^{\times}=K \backslash\{0\}$ acts on itself by conjugation.
(a) Prove that every stabilizer has a cardinality of the form $q^{d}-1$ with d a divisor of n.
(b) Using the class equation, prove the existence of integers λ_{d} such that

$$
\# K^{\times}=q-1+\sum_{d \mid n, d \neq n} \lambda_{d} \frac{q^{n}-1}{q^{d}-1}
$$

5. Assume that $d \mid n$ and $d \neq n$.
(a) Prove that Φ_{n} divides $\frac{X^{n}-1}{X^{d}-1}$ in $\mathbb{Z}[X]$.
(b) Prove that Φ_{n} divides $\left(X^{n}-1\right)-\sum_{d \mid n, d \neq n} \lambda_{d} \frac{X^{n}-1}{X^{d}-1}$ in $\mathbb{Z}[X]$.
(c) Deduce that $\Phi_{n}(q)$ divides $q-1$.
6. Prove that $\left|\Phi_{n}(q)\right|>\prod_{i=1}^{\varphi(n)}|q-1| \geq|q-1|$ and conclude.
