MATH 71 - ABSTRACT ALGEBRA FALL 2015 FINAL EXAMINATION

DUE NOVEMBER 24

1. Cyclotomic polynomials

For $n \geq 2$, let μ_n denote the multiplicative group of n^{th} roots of 1: $\mu_n = \{z \in \mathbb{C}, z^n = 1\}$ and Π_n the set of generators of μ_n . The cyclotomic polynomial of order n is

$$\Phi_n = \prod_{\xi \in \Pi_n} (X - \xi).$$

We recall that the Euler indicator φ satisfies the formula $\sum_{d|n} \varphi(d) = n$.

- **1.** Consider the polynomial $P_n = \prod_{\xi \in \mu_n} (X \xi)$.
- (a) Prove that $P_n = X^n 1$.
- (b) Determine Φ_p for p prime.

2. Let $\omega = e^{\frac{2i\pi}{n}}$ and k an integer such that $0 \le k \le n-1$.

- (a) Let d be the order of ω^k in μ_n . Prove that $\omega^k \in \Pi_d$
- (b) Deduce that $X^n 1$ divides $\prod_{d|n} \Phi_d$.
- (c) Prove that $\prod_{d|n} \Phi_d = X^n 1$.

3. We will prove by induction that Φ_n has integer coefficients.

- (a) Verify the result for n = 1.
- (b) Assuming the result true up to n-1, find a monic polynomial $P \in \mathbb{Z}[X]$ such that $X^n - 1 = P \Phi_n.$
- (c) Prove the existence of polynomials Q and R in $\mathbb{Z}[X]$ with $\deg(R) < \deg(P)$, such that $X^n - 1 = PQ + R.$
- (d) Prove that the couple (Q, R) is unique and conclude that $\Phi_n \in \mathbb{Z}[X]$.

2. Application: proof of Wedderburn's Theorem

We shall prove that every finite division ring is commutative. Let K be a finite division ring. We argue by induction on the cardinality of K.

0. Prove the following result.

Lemma. If A is a finite division ring and F a subring of A that is a field, then A is a finite dimensional vector space over F.

1. Prove that a division ring of cardinality 2 is commutative.

From now on, we assume that every division ring of cardinality $\langle \# K$ is commutative and that K is noncommutative.

2. Let $\mathcal{Z} = \{x \in K \mid xy = yx \text{ for all } y \in K\}$ be the center of K and $q = \#\mathcal{Z}$.

- (a) Prove that \mathcal{Z} is a subring of K.
- (b) Prove the existence of an integer $n \ge 2$ such that $\#K = q^n$.
- **3.** For $x \in K$, let $K_x = \{y \in K \mid xy = yx\}$.
- (a) Verify that either $K_x = K$ or K_x is a field extension of \mathcal{Z} and a subring of K.
- (b) Deduce the existence of a divisor d of n such that $\#K_x = q^d$.
- 4. Recall that the multiplicative group $K^{\times} = K \setminus \{0\}$ acts on itself by conjugation.
- (a) Prove that every stabilizer has a cardinality of the form $q^d 1$ with d a divisor of n.
- (b) Using the class equation, prove the existence of integers λ_d such that

$$\#K^{\times} = q - 1 + \sum_{d|n, d \neq n} \lambda_d \frac{q^n - 1}{q^d - 1}.$$

5. Assume that d|n and $d \neq n$.

(a) Prove that Φ_n divides $\frac{X^n - 1}{X^d - 1}$ in $\mathbb{Z}[X]$.

(b) Prove that Φ_n divides $(X^n - 1) - \sum_{d|n, d \neq n} \lambda_d \frac{X^n - 1}{X^d - 1}$ in $\mathbb{Z}[X]$.

- (c) Deduce that $\Phi_n(q)$ divides q-1.
- 6. Prove that $|\Phi_n(q)| > \prod_{i=1}^{\varphi(n)} |q-1| \ge |q-1|$ and conclude.