MATH 71 FALL 2015

DIARY

Textbook

[**DF**] Abstract Algebra (3rd ed.), by S. Dummit and R. M. Foote.

EFFECTIVE SYLLABUS

O. Preliminaries - 2 lectures

O.1 Binary relations

O.2 Basic arithmetic

I. Groups - 15 lectures

- I.1. Generalities
- I.2. Examples of groups
- I.3. Morphisms and subgroups
- I.4. Cyclic groups
- I.5. Groups presented by generators and relations
- I.6. Quotient groups
- I.7. The First Isomorphism Theorem
- I.8. Lagrange's Theorem
- I.9. The alternating group \mathfrak{S}_n
- I.10. Group actions
- I.11. Composition series and Hölder's Program
- I.12. Sylow's Theorems
- I.13. The Fundamental Theorem of finitely generated abelian groups
- I.14. Direct and semi-direct products

II. Rings - 10 lectures

- II.1. Generalities
- II.2. Properties of ideals
- II.3. Euclidean domains
- II.4. Principal ideal domains
- II.5. Unique factorization domains
- II.6. Rings of fractions
- II.7. Polynomial rings
- II.8. Field extensions

III. Introduction to representation theory - 1 lecture

Updated: November 16, 2015.

Week 1

Lecture 1. [DF, §0.1-§0.3]

Equivalence relations: definition and examples. Equivalence classes, representatives. Correspondence between equivalence relations and partitions.

Basic arithmetic vocabulary, relatively prime numbers. Congruence modulo n.

Lecture 2. [DF, §0.1-§0.3]

Review of Euclidean division, the Euclidean Algorithm. Addition and multiplication are well-defined operations in $\mathbb{Z}/n\mathbb{Z}$. Characterization of invertible elements: $(\mathbb{Z}/n\mathbb{Z})^{\times} = \{\bar{a}, a \wedge n = 1\}.$

Lecture 3. [DF, §1.1-§1.4]

Composition laws (binary operationa), associativity, commutativity. Groups: definition, first examples. Abelian groups are denoted additively. General properties: uniqueness of the identity and of the inverse, inverse of a composition. Cancellation laws, conjugation.

Fields: definition, examples ($\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}/p\mathbb{Z}, p$ prime). Matrix groups: GL(2, F), SL(2, F).

Week 2

Lecture 4. [DF, §1.2]

Dihedral groups: geometric definition, enumeration ($\#D_{2n} = 2n$). Table of a group. Generators and relations: examples of $\mathbb{Z}/n\mathbb{Z}$ and $D_{2n} = \langle r, s \mid s^2 = 1, r^n = 1, rs = sr^{-1} \rangle$.

Lecture 5. [DF, §1.3-§1.6]

Symmetric groups \mathfrak{S}_n : permutations, cycles. Cycles with disjoint supports commute. Canonical decomposition: every permutation can be uniquely written as a (commuting) product of cycles with disjoint supports. Cycle Decomposition Algorithm. Application to the determination of the order of a permutation.

Group homomorphisms: definition, examples. Morphisms map identity to identity and inverse to inverse. Isomorphism. The isomorphic image of an abelian group is abelian. Isomorphisms preserve the order of elements.

Problem Session 1. A permutation has order 2 if and only if its canonical decomposition only contains permutations. Presentation of $\mathbb{Z}/n\mathbb{Z}$.

Lecture 6. [DF, §2.1-§2.2]

Subgroups: definition, examples, simple groups, the Subgroup Criterion.

Subgroups of $SL(2,\mathbb{R})$ isomorphic to $\{z \in \mathbb{C}, |z| = 1\}, \mathbb{R}_+^{\times}, \text{ and } \mathbb{R}$.

Images and kernels of homomorphims are subgroups (generalizing the case of linear maps between vector spaces). Characterization of injectivity via the kernel.

Week 3

Lecture 7. [DF, §2.3]

Cyclic groups: classification by the cardinality, characterization of generators, subgroups.

Lecture 8. [DF, §2.4 - §3.1]

Group $\langle A \rangle$ generated by a subset A of a group G: definition as minimal subgroup containing A, characterisation by the intersections of all subgroups containing A, general form of the elements.

Equivalence relation \sim_H on G, with H < G. Left cosets: gH is the class of $g \in G$ for this relation. Composition of cosets $g_1H \star g_2H = g_1 \cdot g_2H$ is well defined if and only if gH = Hg for all $g \in G$. Normal subgroups.

Problem Session 2. A subgroup H of \mathbb{Q} such that $x \in H \Rightarrow \frac{1}{x} \in H$ must be $\{0\}$ or \mathbb{Q} .

Lecture 9. [DF, §3.1 - §3.2 - §3.3]

Characterizations of normal subgroups, quotients. Normal subgroups are exactly kernels of homomorphisms. The First Isomorphism Theorem. Application: $\mathbb{R}/2\pi\mathbb{Z}\simeq\mathbb{T}$.

Week 4

Problem Session 3. Subgroups of $\mu_n = \{z \in \mathbb{C}, z^n = 1\}$. Subgroups of D_{2n} generated by various subsets. $SL(n, F) \triangleleft GL(n, F)$ and $GL(n, F)/SL(n, F) \simeq F^{\times}$.

Lecture 10. [DF, §3.2]

Lagrange's Theorem and corollaries: the order of an element divides the order of the group, a group with prime order is cyclic. The index of a subgroup. Finite case: $[G:H] = \frac{\#G}{\#H}$, examples. A subgroup with index 2 is normal. There is no general converse for Lagrange's Theorem: the tetrahedron group, of order 12, as no subgroup of order 6.

Lecture 11. [DF, §3.5]

Cycles and transpositions generate \mathfrak{S}_n ; there is no uniqueness in the way a given permutation decomposes into transpositions. Action of $\sigma \in \mathfrak{S}_n$ on $\Delta = \prod_{1 \le i < j \le n} (X_i - X_j)$. Defi-

nition of the signature: $\sigma \cdot \Delta = \varepsilon(\sigma)\Delta$. This defines a homomorphism $\varepsilon : \mathfrak{S}_n \longrightarrow \{-1, 1\}$, whose kernel is called the *alternating group* \mathfrak{A}_n with cardinality $\frac{n!}{2}$. Transpositions have signature -1, notion of even and odd transposition.

Week 5

Lecture 12. [DF, §1.7,§4.1]

Action of a group on a set: definition and examples. The kernel of $G \curvearrowright X$ is the kernel of the homomorphism $g \mapsto \sigma_g$, where $\sigma_g(x) = g \cdot x$; faithful actions.

The stabilizer $\operatorname{Stab}_G(x)$ of an element $x \in X$ is a subgroup of G with index the cardinality of the orbit of x. Transitive actions.

Lecture 13. [DF, §4.2]

Any group acts on itself by left multiplication. Example of Klein's group V₄.

More generally, if H < G, the action $G \curvearrowright G/H$ given by left multiplication is transitive. The stabilizer of $1_G H$ is H, the kernel is $N = \bigcap_{g \in G} g H g^{-1}$ and N is the largest normal subgroup of G contained in H.

Corollary (Cayley): every finite group is isomorphic to a subgroup of \mathfrak{S}_n for some n.

Lecture 14. [DF, §4.3]

Equivariant maps and isomorphisms in the category of G-sets. Centralizers and normalizers, action by conjugation. Examples: similar matrices, equivalences classes and rank. The Class Equation and applications: a group of order p^{α} with p prime has non-trivial center. A group of order p^2 with p prime is abelian, isomorphic to $\mathbb{Z}/p^2\mathbb{Z}$ or $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$.

Week 6

Lecture 15. [DF, §3.4]

Cauchy's Theorem: if G is a finite group and p prime divides #G, then G contains an element (hence a subgroup) of order p. Proof in the abelian case. Simple groups, composition series, Jordan-Hölder Theorem. Hölder's classification program. Feit-Thompson's Theorem: simple groups of odd order are cyclic.

Lecture 16. [DF, §4.5, §5.2, §5.4]

Maximal *p*-subgroups: Sylow's theorems. Structure of finitely generated abelian groups. Structure of compactly generated abelian groups. Characterization of direct products. Structure of the group H_1H_2 when $H_1 \triangleleft G$, $H_2 < G$ and $H_1 \cap H_2 = \{1\}$.

Lecture 17. [DF, §5.5]

Semi-direct products: general case. Application: if p and q are prime numbers and p|(q-1), there exists a non-abelian group of order pq.

Lecture 18. [DF, §7.1]

Rings: definition, basic examples. Fields, division rings, example of the quaternions \mathbb{H} . Rings of functions with values in a ring. Zero divisors and units.

Week 7

Lecture 19. [DF, §7.1, §7.2]

Integral domains. Cancellation laws. A finite integral domain with identity is a field. Wedderburn's Theorem: a finite division ring is abelian, hence a field.

Subgrings and ring morphisms. The kernel of a ring homomorphism is absorbent. Ideals. If I is an ideal in A, the quotient group A/I is a ring for the multiplication (a + I)(b + I) = ab + I. Natural projection $A \longrightarrow A/I$, First Isomorphism Theorem.

Lecture 20. [DF, §7.1, §7.4]

Finitely supported sequences in a ring: polynomials.

Ideal generated by a subset: definition, characterization, commutative case.

Principal ideals. $b \in (a) \Leftrightarrow a | b \Leftrightarrow (b) \subset (a)$. If I is an ideal in A, then I = A if and only if I contains a unit. A commutative ring with unit is a field if and only if has no other ideals than $\{0\}$ and A.

Lecture 21. [DF, §7.4]

Maximal ideals; I is maximal if and only if A/I is a field. Examples: (X) is not maximal in $\mathbb{Z}[X]$, the ideal generated by 2 and X is. Prime ideals in a commutative ring.

Week 8

Lecture 22. [DF, §8.1]

Euclidean domains, division algorithm. Examples: \mathbb{Z} , $\mathbb{R}[X]$, fields. In a Euclidean domain, every ideal is principal. Example: $\mathbb{Z}[X]$ carries no Euclidean division.

Multiples, divisors, notion of g.c.d. Uniqueness up to a unit. The division algorithm allows to compute a g.c.d., Bézout relation.

More about polynomial rings: if A is a commutative ring with identity and I is an ideal, then (I) = I[X] and $A[X]/I[X] \simeq A/I[X]$. Polynomials in several variables.

Lecture 23. [DF, §8.2]

A principal ideal domain (PID) is an integral domain in which every ideal is principal. Euclidean rings are PIDs, but $\mathbb{Z}\begin{bmatrix}\frac{1+i\sqrt{19}}{2}\end{bmatrix}$ is a PID that is not Euclidean. For a and b, in a PID, any generator of (a, b) is a g.c.d. It is unique up to multiplication by a unit and satisfies a Bézout relation. In a PID, every prime ideal is maximal.

Corollary: if A is a commutative ring, then A[X] is a PID $\Rightarrow A$ is a field. Conversely, if A is a field, then A[X] is a Euclidean domain hence a PID.

Fun: group rings and convolution.

Lecture 24. [DF, §8.3]

Notice that in \mathbb{Z} , an alternate way to compute the g.c.d. of two elements is to compare their prime factors decompositions. Irreducibles and primes in an integral domain, associate elements. General fact: prime \Rightarrow irreducible. The converse does not hold in $\mathbb{Z}[i\sqrt{5}]$ as 3 is irreducible but not prime: $3^2 = (2+i\sqrt{5})(2-i\sqrt{5})$. In a PID, prime \Leftrightarrow irreducible. Unique factorization domains (UFD): definition, examples. In a UFD, prime \Leftrightarrow irreducible. Computation of g.c.d.'s in a UFD.

Week 9

Lecture 25. [DF, §8.3, §7.5]

Every principal ideal domain has the unique factorization property. Rings of fractions: general construction and universal property. Fields of fractions: examples of \mathbb{Q} and F(X).

Lecture 26. [DF, §9.3]

Given a ring A with field of fractions F can results obtained in F[X] be used in A[X]? Gauss' Lemma: if A is a UFD and P is reducible in F[X], then it is reducible in A[X]. Corollary: if A is a UFD and the coefficients of P have g.c.d. 1, then P is irreducible in F[X] if and only if it is irreducible in A[X]. Transfer theorem: A UFD $\Leftrightarrow A[X]$ UFD. Corollary: if A is a UFD, so is $A[X_1, \ldots, X_n]$.

Problem session 4. Quotients of A[X], nilpotent elements.

Lecture 27. [DF, §13.1]

Two constructions of \mathbb{C} : as a subring of $M_2(\mathbb{R})$ and as $\mathbb{R}[X]/(X^2+1)$.

Fields extensions, degree. If F is a field and $P \in F[X]$ is irreducible, then F[X]/(P) is an extension of degree deg(P) of F in which P has a root. Conversely, if K is an extension of F in which P has a root α , then $F(\alpha) \simeq F[X]/(P)$.

Week 10

Lecture 28. Introduction to representation theory.

Fun: definitions and examples of representations (permutations, left regular).

Irreducibles, Schur's Lemma. Fourier analysis on abelian groups, projective representations of SO(3), representations of SU(2) and spin of particles.