Math 71

Homework 5

1. As usual, for positive integers, let $[m, n]$ denote the least common multiple of m and n, and (m, n) their gcd.
(a) Using the First Isomorphism Theorem show that there is an injective homomorphism $\mathbb{Z} /[m, n] \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$. Note: to use the first isomorphism theorem means you do not (directly) define a homomorphism $\mathbb{Z} /[m, n] \mathbb{Z} \rightarrow$ $\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$.
(b) Show that the above mapping is surjective (and hence an isomorphism) if and only if $(m, n)=1$, in which case $\mathbb{Z} / m n \mathbb{Z} \cong \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$.
2. Let $G_{1}=\langle x\rangle$ and $G_{2}=\langle y\rangle$ be finite cyclic groups of order m and n respectively. Show that $G_{1} \times G_{2}$ is cyclic if and only if $(m, n)=1$. This should follow easily from the previous problem.
3. Let $\varphi: \mathbb{Z} / 18 \mathbb{Z} \rightarrow \mathbb{Z} / 12 \mathbb{Z}$ be the homomorphism satisfying $\varphi(\overline{1})=\overline{10}$, that is the class of 1 in $\mathbb{Z} / 18 \mathbb{Z}$ is mapped to the class of 10 in $\mathbb{Z} / 12 \mathbb{Z}$.
(a) Show that φ is well-defined, but the map $\psi: \mathbb{Z} / 18 \mathbb{Z} \rightarrow \mathbb{Z} / 12 \mathbb{Z}$ induced by $\psi(\overline{1})=\overline{3}$ is not.
(b) Compute the kernel of φ, and apply the first isomorphism theorem.
(c) To what well-known group is $\operatorname{Im}(\varphi)$ isomorphic? Using this representation, your statement invoking the first isomorphism theorem should look like an application of the third isomorphism theorem; make sure it does!
4. Let $\mathbb{Z}[x]$ denote the set of polynomials with coefficients in \mathbb{Z}. It is obvious that $\mathbb{Z}[x]$ is an additive group. The example will be even more important as we start the study of rings.
(a) Define $\varphi: \mathbb{Z}[x] \rightarrow \mathbb{Z}$ by $\varphi(f)=f(0)$. Show that φ is a surjective homomorphism and compute its kernel. What statement does the first isomorphism theorem yield?
(b) Do the same as above with $\varphi: \mathbb{Z}[x] \rightarrow \mathbb{Z}$ defined by $\varphi(f)=f(3)$.
5. page 122: $8,10,14$
