Final Practice Problems for Math 71

1. Let F be a field and $a \in F \backslash\{0\}$.
(a) If $a p(x)$ is irreducible in $F[x]$, then prove that $p(x)$ is irreducible over F.
(b) If $p(a x)$ is irreducible in $F[x]$, then prove that $p(x)$ is irreducible over F.
(c) If $q(x):=p(x+a)$ is irreducible in $F[x]$, then prove that $p(x)$ is irreducible over F.
(d) Use part (c) to show that $p(x)=8 x^{3}-6 x+1$ is irreducible over \mathbf{Q}
2. Which of the following polynomials are irreducible over \mathbf{Q} ?
(a) $x^{5}+9 x^{4}+12 x^{2}+6$.
(b) $x^{4}+x+1$.
(c) $x^{4}+3 x^{2}+3$.
(d) $x^{5}+5 x^{2}+1$.
(e) $x^{4}+1$.
(f) $\left(\frac{5}{2}\right) x^{5}+\left(\frac{9}{2}\right) x^{4}+15 x^{3}+\left(\frac{3}{7}\right) x^{2}+6 x+\frac{3}{14}$.
3. We showed in lecture that $p_{n}(x):=x^{n-1}+x^{n-1}+\cdots+x+1$ is irreducible over \mathbf{Q} if n is prime. Show that $p_{n}(x)$ is irreducible if and only if n is prime.
