## Math 71 Homework Due Monday, October 24th.

- In addition to the already assigned problems 11, 18 and 19 on page 96 :
- Page 101: 3 and
- Page 11: 14.
- And work the following problems:

1. Let $n$ and $m$ be positive integers. Recall that their least common multiple, written $[n, m]$, is the positive integer $l=[n, m]$ such that $n|l, m| l$ and such that if $k$ is any other integer with $n \mid k$ and $m \mid k$, then $l \mid k$.
(a) Show that $[n, m]$ always exists.
(b) Show that if $(n, m)$ is the greatest common divisor of $n$ and $m$, then $(n, m)[n, m]=a b$.
(Please don't invoke the Fundamental Theorem of Arithmetic here. You can do these using techniques we've invoked in lectures such as the Well Ordering Property of $\mathbf{Z}$ and the division algorithm.)
2. Let $n$ and $m$ be positive integers. Recall that $(n, m)$ is the greatest common divisor of $n$ and $m$.
(a) Use the First Isomorphism Theorem to show that there is an injective homomorphism of $\mathbf{Z} /[n, m] \mathbf{Z}$ into the direct product $\mathbf{Z} / n \mathbf{Z} \times \mathbf{Z} / m \mathbf{Z}$.
(b) Show that your map in part (a) is surjective (and therefore and isomorphism) if and only if $(n, m)=1$. Conclude that is this case $\mathbf{Z} / n m \mathbf{Z} \cong \mathbf{Z} / n \mathbf{Z} \times \mathbf{Z} / m \mathbf{Z}$.
3. Let $G_{1}=\langle x\rangle$ and $G_{2}=\langle y\rangle$ be finite cyclic groups of orders $n$ and $m$ respectively. Show that $G_{1} \times G_{2}$ is cyclic if and only if $(n, m)=1$. Conclude that $\mathbf{Z} / n m \mathbf{Z} \cong \mathbf{Z} / n \mathbf{Z} \times \mathbf{Z} / m \mathbf{Z}$ if and only if $(n, m)=1$. (You've already done half of this in the previous problem.)
