Math 71 Homework 5

- page 96: 11, 18, 19 (for 18 you should consider the set HN).
- p 101: 3
- The following additional problems:
 - 1. As usual, for positive integers, let [m, n] denote the least common multiple of m and n, and (m, n) their gcd.
 - (a) Using the First Isomorphism Theorem show that there is an injective homomorphism $\mathbb{Z}/[m,n]\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$. Note: to use the first isomorphism theorem means you do **not** (directly) define a homomorphism $\mathbb{Z}/[m,n]\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$.
 - (b) Show that the above mapping is surjective (and hence an isomorphism) if and only if (m, n) = 1, in which case $\mathbb{Z}/m\mathbb{Z} \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$.
 - 2. Let $G_1 = \langle x \rangle$ and $G_2 = \langle y \rangle$ be finite cyclic groups of order m and n respectively. Show that $G_1 \times G_2$ is cyclic if and only if (m, n) = 1. In particular, conclude $\mathbb{Z}/mn\mathbb{Z} \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ if and only if (m, n) = 1. Note you have already done half of this problem in the previous problem.
 - 3. Let $\varphi : \mathbb{Z}/18\mathbb{Z} \to \mathbb{Z}/12\mathbb{Z}$ be the homomorphism satisfying $\varphi(\bar{1}) = \bar{10}$, that is the class of 1 in $\mathbb{Z}/18\mathbb{Z}$ is mapped to the class of 10 in $\mathbb{Z}/12\mathbb{Z}$.
 - (a) Show that φ is well-defined, but the map $\psi : \mathbb{Z}/18\mathbb{Z} \to \mathbb{Z}/12\mathbb{Z}$ induced by $\psi(\bar{1}) = \bar{3}$ is not.
 - (b) Compute the kernel of φ , and apply the first isomorphism theorem.
 - (c) To what well-known group is $Im(\varphi)$ isomorphic? Using this representation, your statement invoking the first isomorphism theorem should look like an application of the third isomorphism theorem; make sure it does!
 - 4. Let $\mathbb{Z}[x]$ denote the set of polynomials with coefficients in \mathbb{Z} . It is obvious that $\mathbb{Z}[x]$ is an additive group. The example will be even more important as we start the study of rings.
 - (a) Define $\varphi : \mathbb{Z}[x] \to \mathbb{Z}$ by $\varphi(f) = f(0)$. Show that φ is a surjective homomorphism and compute its kernel. What statement does the first isomorphism theorem yield?
 - (b) Do the same as above with $\varphi : \mathbb{Z}[x] \to \mathbb{Z}$ defined by $\varphi(f) = f(3)$.