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Truth Assignments and Tautological Implication

If v is a truth assignment on the set of sentence symbols (v is a func-
tion that assigns each sentence symbol to T or F ), we extend v to a truth
assignment v on all formulas by recursion on formulas:

v(An) = v(An)

v((¬α)) =

{
T v(α) = F

F otherwise.

v((α ∧ β)) =

{
T v(α) = v(β) = T

F otherwise.

v((α ∨ β)) =

{
F v(α) = v(β) = F

T otherwise.

v((α→ β)) =

{
F v(α) = T & v(β) = F

T otherwise.

v((α↔ β)) =

{
T v(α) = v(β)

F otherwise.
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Another way to phrase this is using Boolean functions as discussed in
Wednesday’s handout. That is, we can define

V al¬(X) =

{
T X = F

F X = T

V al∧(X, Y ) =

{
T X = Y = T

F otherwise.

V al∨(X, Y ) =

{
F X = Y = F

T otherwise.

V al→(X, Y ) =

{
F X = T & Y = F

T otherwise.

V al↔(X, Y ) =

{
T X = Y

F otherwise.

Then we can define v by
v(An) = v(An)

v((¬α)) = V al¬(v(α)),

and for any binary connective ∗,

v((α ∗ β)) = V al∗(v(α), v(β)).

This notation might simplify the following task.
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Prove the following proposition, which will be useful later in this handout,
by induction1 on formulas:

Proposition: For every two truth assignments v and w that agree with
each other on every sentence symbol that occurs in α, we have v(α) = w(α).

1At the end of this handout is an example of a proof by induction on formulas.
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Here are some key definitions from the reading:

A truth assignment v satisfies a wff α if v(α) = T .

A truth assignment v satisfies a set Σ of wffs if v satisfies every wff in Σ.

A set Σ of wffs is satisfiable if there is a truth assignment that satisfies
Σ.

If Σ is a set of wffs and α is a wff, then Σ tautologically implies α, written

Σ |= α,

if every truth assignment v that satisfies Σ also satisfies α. Informally, when-
ever every wff in Σ is true, then α is also true.

If α and β are wffs, we say α tautologically implies β, written

α |= β

if {α} tautologically implies β. That is, α tautologically implies β if every
truth assignment that satisfies α also satisfies β.

Wffs α and β are tautologically equivalent if each tautologically implies
the other. That is, α and β are tautologically equivalent if for every truth
assignment v, we have v(α) = v(β).
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Show that the following are tautologically equivalent:

(α1 ∧ α2 ∧ · · · ∧ αn)→ β

αn → (αn−1 → (· · · (α1 → β) · · · ))

Of course, neither of the above is actually a formula. We will eliminate
parentheses when that can be done unambiguously; the textbook gives rules
for eliminating parentheses at the end of section 1.3. Officially, the formula
(α1 ∧ α2 ∧ · · · ∧ αn)→ β is an abbreviation for the actual wff

((α1 ∧ (α2 ∧ (· · · ∧ αn) · · · ))→ β).

Avoid omitting parentheses in formulas involving → and ↔. Officially, for
example, A ↔ B ↔ C is an abbreviation for (A ↔ (B ↔ C)), and does
NOT mean that A, B, and C have the same truth value. The textbook may
abbreviate the formula (αn → (αn−1 → (· · · (α1 → β) · · · ))) as

αn → αn−1 → · · · → α1 → β.

I suggest avoiding this.
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Show the following:

Σ |= α if and only if Σ ∪ {¬α} is not satisfiable.

If Σ is satisfiable, then at least one of Σ∪{α} and Σ∪{¬α} is satisfiable.
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A set of formulas Σ is said to be finitely satisfiable if every finite subset
of Σ is satisfiable. We are about to prove the Compactness Theorem: If Σ
is finitely satisfiable, then Σ is satisfiable. Prove the following proposition,
which we will use as a lemma:

Proposition: If Σ is finitely satisfiable, then at least one of Σ∪{α} and
Σ ∪ {¬α} is finitely satisfiable.
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Here is an outline of the proof of the Compactness Theorem. Fill in the
missing details.

Suppose that Σ is finitely satisfiable. We must show that Σ is satisfiable.
Define, by induction on n,

Σ0 = Σ

Σn+1 =

{
Σn ∪ {An} if this is finitely satisfiable;

Σn ∪ {¬An} otherwise.

Show that each Σn is finitely satisfiable.

Now let Σ∗ =
∞⋃
n=0

Σn. Show that Σ∗ is finitely satisfiable.
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Note that Σ ⊆ Σ∗, and that for each n, either An or ¬An is in Σ∗ (but
not both). Define a truth assignment v by

v(An) =

{
T An ∈ Σ∗

F ¬An ∈ Σ∗

Show that v satisfies Σ∗, and therefore Σ (showing that Σ is satisfiable),
as follows:

Suppose not. Let α ∈ Σ∗ with v(α) = F . For each sentence symbol An,
define

βn =

{
An An ∈ Σ∗

¬An ¬An ∈ Σ∗

Let Γ be the finite subset of Σ∗ defined by

Γ = {α} ∪ {βn | An occurs in α}.

Because Σ∗ is finitely satisfiable, there is a truth assignment w satisfying Γ.
Deduce a contradiction.

9



Here is an example of a proof by induction on formulas. It is a more
careful version of an argument in the textbook.

Proposition: Every formula has balanced parentheses. (This means it
has the same number of left parenthesis symbols as right parenthesis sym-
bols.)

Proof: Prove this by induction on formulas.

Base Case: Suppose α is a sentence symbol, and show α has balanced
parentheses. The formula α has 0 left parentheses and 0 right parentheses.
Therefore α has balanced parentheses.

Inductive Step for ¬: Assume that α has balanced parentheses, and show
that (¬α) has balanced parentheses.

We know α has balanced parentheses; say α has m left parentheses and
m right parentheses. The formula (¬α) has these same parentheses, plus one
more left parenthesis at the beginning and one more right parenthesis at the
end. That is, (¬α) has m + 1 left parentheses and m + 1 right parentheses.
Therefore (¬α) has balanced parentheses.

Inductive Steps for Binary Connectives: Assume that α and β have bal-
anced parentheses, and that ∗ is a binary connective (∧, ∨, →, or ↔), and
show that (α ∗ β) has balanced parentheses.

Say α has m left parentheses and m right parentheses, and β has n left
parentheses and n right parentheses. The formula (α∗β) has the parentheses
from α and β, plus one more left parenthesis at the beginning and one more
right parenthesis at the end. That is, (α ∗ β) has m+ n+ 1 left parentheses
and m+n+ 1 right parentheses. Therefore (α∗β) has balanced parentheses.

This completes the proof.
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