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Truth Assignments and Tautological Implication
If v is a truth assignment on the set of sentence symbols (v is a func-

tion that assigns each sentence symbol to T or F'), we extend v to a truth
assignment © on all formulas by recursion on formulas:

)
{T (o) =F

F otherwise.

anay={p =T
TR A

F 9(a)=T&v(p)=F

T otherwise.

{T (a) = 3(3)

F otherwise.



Another way to phrase this is using Boolean functions as discussed in
Wednesday’s handout. That is, we can define

T X=F
Val-(X) =
F X=T
T X=Y=T
VCLl/\ (X7 Y) = .
F otherwise.
F X=Y=F
Valv (Xa Y) = .
T otherwise.

F X=T&Y =F
Val ,(X,Y) = .&
T otherwise.
T X=Y
Val,(X,Y) = )
F otherwise.

Then we can define v by
U(A,) = v(4,)

o((-a)) = Val-(v(a)),
and for any binary connective x,
v((ax B)) = Val.(v(),v(5)).

This notation might simplify the following task.



Prove the following proposition, which will be useful later in this handout,
by induction! on formulas:

Proposition: For every two truth assignments v and w that agree with
each other on every sentence symbol that occurs in «, we have v(«a) = w(a).

LAt the end of this handout is an example of a proof by induction on formulas.



Here are some key definitions from the reading;:
A truth assignment v satisfies a wif a if (o) =T
A truth assignment v satisfies a set 3 of wifs if v satisfies every wif in X.

A set X of wifs is satisfiable if there is a truth assignment that satisfies

If X is a set of wifs and « is a wif, then X tautologically implies o, written

Y Ea,

if every truth assignment v that satisfies > also satisfies a. Informally, when-
ever every wif in ¥ is true, then « is also true.

If a and 8 are wifs, we say « tautologically implies [, written

o

if {a} tautologically implies 5. That is, « tautologically implies 3 if every
truth assignment that satisfies a also satisfies .

Wits a and g are tautologically equivalent if each tautologically implies
the other. That is, a and [ are tautologically equivalent if for every truth
assignment v, we have v(a) = v(f).



Show that the following are tautologically equivalent:
(et Nag AN~ Nay) =

@ = (a1 = (- oy = 5) )

Of course, neither of the above is actually a formula. We will eliminate
parentheses when that can be done unambiguously; the textbook gives rules
for eliminating parentheses at the end of section 1.3. Officially, the formula
(an ANag A -+ AN ay,) — [ is an abbreviation for the actual wif

((ar A(ag A (- ANa) ) = ).

Avoid omitting parentheses in formulas involving — and <. Officially, for
example, A <» B < C is an abbreviation for (A < (B < C)), and does
NOT mean that A, B, and C have the same truth value. The textbook may
abbreviate the formula (o, = (1 — (- (a1 = 5)--+))) as

Qp = Oy — - = o — .

I suggest avoiding this.



Show the following:

Y | aif and only if ¥ U {—a} is not satisfiable.

If ¥ is satisfiable, then at least one of Y U{a} and X U{—a} is satisfiable.



A set of formulas X is said to be finitely satisfiable if every finite subset
of ¥ is satisfiable. We are about to prove the Compactness Theorem: If X
is finitely satisfiable, then ¥ is satisfiable. Prove the following proposition,
which we will use as a lemma:

Proposition: If ¥ is finitely satisfiable, then at least one of ¥ U {a} and
¥ U {—a} is finitely satisfiable.



Here is an outline of the proof of the Compactness Theorem. Fill in the
missing details.

Suppose that X is finitely satisfiable. We must show that X is satisfiable.
Define, by induction on n,
Yo=2%
oo Y, U{A,}  if this is finitely satisfiable;
S D> {—A,} otherwise.

Show that each 3, is finitely satisfiable.

Now let X* = U Y,. Show that ¥* is finitely satisfiable.

n=0



Note that ¥ C ¥*, and that for each n, either A, or =4, is in X* (but
not both). Define a truth assignment v by

o(A,) = T AneE*
F —-A,eX

Show that v satisfies ¥*, and therefore ¥ (showing that ¥ is satisfiable),
as follows:
Suppose not. Let o € ¥* with T(«) = F. For each sentence symbol A,
define
5, = A, A,eXx*
" -A, -A, eX”
Let I' be the finite subset of ¥* defined by

I'={a}U{B, | A, occurs in a}.

Because X* is finitely satisfiable, there is a truth assignment w satisfying I'.
Deduce a contradiction.



Here is an example of a proof by induction on formulas. It is a more
careful version of an argument in the textbook.

Proposition: Every formula has balanced parentheses. (This means it
has the same number of left parenthesis symbols as right parenthesis sym-
bols.)

Proof: Prove this by induction on formulas.

Base Case: Suppose « is a sentence symbol, and show « has balanced
parentheses. The formula o has 0 left parentheses and 0 right parentheses.
Therefore o has balanced parentheses.

Inductive Step for —: Assume that o has balanced parentheses, and show
that (—«) has balanced parentheses.

We know a has balanced parentheses; say o has m left parentheses and
m right parentheses. The formula (—«) has these same parentheses, plus one
more left parenthesis at the beginning and one more right parenthesis at the
end. That is, (ma) has m + 1 left parentheses and m + 1 right parentheses.
Therefore (—a) has balanced parentheses.

Inductive Steps for Binary Connectives: Assume that o and 8 have bal-
anced parentheses, and that x is a binary connective (A, V, —, or <), and
show that (« * ) has balanced parentheses.

Say « has m left parentheses and m right parentheses, and § has n left
parentheses and n right parentheses. The formula (o * 3) has the parentheses
from « and 3, plus one more left parenthesis at the beginning and one more
right parenthesis at the end. That is, (« % 5) has m + n + 1 left parentheses
and m +n+ 1 right parentheses. Therefore (a* ) has balanced parentheses.

This completes the proof.
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