Math 69 Winter 2017 Friday, February 3

Proposition: $\Sigma \vdash \alpha$ iff $\Sigma \cup \Lambda \models_{taut} \alpha$.

Rule T: If $\Sigma \vdash \alpha_1, \ldots, \Sigma \vdash \alpha_n$, and $\{\alpha_1, \ldots, \alpha_n\} \models_{taut} \beta$, then $\Sigma \vdash \beta$.

Deduction Theorem: If $\Sigma \cup \{\alpha\} \vdash \beta$ then $\Sigma \vdash (\alpha \rightarrow \beta)$.

Contraposition: $\Sigma \cup \{\neg \alpha\} \vdash \beta$ iff $\Sigma \cup \{\neg \beta\} \vdash \alpha$.

Reduction ad Absurdum: If $\Sigma \cup \{\alpha\}$ is inconsistent, then $\Sigma \vdash \neg \alpha$.

Generalization: If y does not occur free in Σ , and $\Sigma \vdash \alpha$, then $\Sigma \vdash \forall y \alpha$.

Generalization on Constants: If c is a constant symbol that does not occur in Σ , and $\Sigma \vdash \alpha$ via a deduction in which the variable y does not occur, then $\Sigma \vdash \forall y \, \alpha_y^c$ via a deduction in which c does not occur.

Example: Show

$$\vdash \alpha_c^x \to \exists x \, \alpha.$$

Example: Show

$$\vdash \forall x \forall y (x = y \to y = x).$$

Exercise 1: Show

 $\vdash (\exists x \alpha \lor \exists x \beta) \leftrightarrow \exists x (\alpha \lor \beta).$

Hint to get started: This wff is tautologically equivalent to a set of two wffs, each of the form $\theta \to \psi$. By Rule T, it suffices to show each of these wffs is deducible.

Exercise 2: Show that if the constant symbol c does not occur in α then $\{\exists x \, \alpha \to \alpha_c^x\}$ is consistent. You may want to use the Re-replacement Lemma from homework:

If y is a variable that does not occur in α , then (y is substitutable for x in α and) x is substitutable for y in α_y^x , and $(\alpha_y^x)_x^y = \alpha$.

as well as the following related fact:

If y is a variable that does not occur in α , and c a constant symbol that does not occur in α , then $(\alpha_y^x)_c^y = \alpha_c^x$ and $(\alpha_c^x)_y^c = \alpha_y^x$.

You may assume that \emptyset is consistent.

Hint: Try to show that if $\{\exists x \alpha \to \alpha_c^x\}$ is inconsistent, then \emptyset is inconsistent. At some point you will need to use Generalization on Constants. **Exercise 3:** Extend exercise 2: Show that if the constant symbol c does not occur in α or Σ , and Σ is consistent, then $\Sigma \cup \{\exists x \, \alpha \to \alpha_c^x\}$ is consistent.