Math 69
Winter 2017
Wednesday, February 1
A deduction of a wff α from a set of wffs Σ is a finite sequence $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ of wffs such that each α_{i} is one of:

1. in Λ (a logical axiom);
2. in Σ (a hypothesis); or
3. derived from earlier formulas by modus ponens;
and $\alpha_{n}=\alpha$.
The set Λ of logical axioms contains all generalizations of formulas of the following forms:
4. Tautologies;
5. $\forall x \alpha \rightarrow \alpha_{t}^{x}$ where t is substitutable for x in α;
6. $\forall x(\alpha \rightarrow \beta) \rightarrow(\forall x \alpha \rightarrow \forall x \beta)$;
7. $\alpha \rightarrow \forall x \alpha$ where x does not occur free in α;
8. $x=x$;
9. $x=y \rightarrow\left(\alpha \rightarrow \alpha^{\prime}\right)$ where α is atomic, and α^{\prime} is obtained from α by replacing some, but not necessarily all, occurrences of x with y.

Recall that t is substitutable for x in α means that if a variable v occurs in t, then in α there is no free occurrence of x in the scope of any quantifier $\forall v$ or $\exists v$. For example, in the language of arithmetic, $S y$ is not substitutable for x in the formula $\exists y(x<y)$, because the variable y occurs in $S y$, and there is a free occurrence of x in the scope of the quantifier $\exists y$. This is good, because we do not want

$$
\forall x \exists y(x<y) \rightarrow \exists y(S y<y)
$$

to be a logical axiom.

Exercise: Explain why this is not a logical axiom in Group 6:

$$
v=w \rightarrow(P w z \rightarrow P v z) .
$$

Explain why this is a logical axiom in Group 1:

$$
\forall x(P x \rightarrow \neg \neg P x)
$$

but this is not:

$$
\forall x P x \rightarrow \forall x \neg \neg P x .
$$

Identify which of the following are logical axioms in Group 2, where c is a constant symbol, f is a one-place function symbol, P is a two-place predicate symbol, and u, v, w, x, y, z are variables:

$$
\begin{aligned}
\forall u \exists v \neg P u v & \rightarrow \exists v \neg P c v \\
\forall y P z y & \rightarrow P z f z \\
\forall x \exists y P y x & \rightarrow \exists y P y f x \\
\forall x \exists y P y x & \rightarrow \exists y P y f y \\
\forall x P x x & \rightarrow P x x \\
\forall x \exists y P y x & \rightarrow \exists y P y f f z \\
\forall x \exists y P y x & \rightarrow \exists y P f y x
\end{aligned}
$$

Exercise: Give a deduction (from \emptyset) of $\forall x P x \rightarrow \forall x \neg \neg P x$. (This is not a logical axiom, but it has a three-line deduction.)

Exercise: Show

$$
\{\forall x(P x \rightarrow Q x), \forall z P z\} \vdash Q c
$$

(where c is a constant symbol) by giving a deduction.

Show

$$
\{\forall x(P x \rightarrow Q x), \forall z P z\} \vdash Q y
$$

(where y is a variable symbol) by giving a deduction.

Exercise: It is not hard to see that the set Λ of logical axioms is a decidable set. Explain why, if Σ is any decidable set of formulas, then

$$
\{\alpha \mid \Sigma \vdash \alpha\}
$$

is effectively enumerable.

Exercise: Show that for any set of wffs Σ and wff α,

$$
\Sigma \vdash \alpha \Longleftrightarrow \Sigma \cup \Lambda \models_{\text {taut }} \alpha
$$

(where $\models_{\text {taut }}$ denotes tautological implication).
Conclude that if $\Sigma \vdash \alpha_{1}, \Sigma \vdash \alpha_{2}, \ldots, \Sigma \vdash \alpha_{n}$, and

$$
\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\} \models_{\text {taut }} \beta
$$

then $\Sigma \vdash \beta$. (The textbook calls this result Rule T. It is useful if you want to demonstrate that $\Sigma \vdash \beta$ without giving an actual deduction of β from Σ.)

Exercise: It is not hard to see that that

$$
v=w \rightarrow(P w z \rightarrow P v z)
$$

is a valid formula, where P is a two-place predicate symbol, and v, w, and z are variables. Note that this is not a logical axiom.

Give a deduction of this formula.

