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Abstract

This paper is an example of an expository mathematics paper, illustrating appro-
priate format and style. It presents a proof of finitary Ramsey’s theorem (Ramsey,
1930) from infinitary Ramsey’s theorem (Ramsey, 1930) and the compactness theorem
(Gödel, 1929).

1 Introduction

In 1930, Frank Ramsey published proofs of both finitary and infinitary versions of what is
now known as Ramsey’s theorem [3]. In the same year, Kurt Gödel published results from
his 1929 doctoral thesis, including the compactness theorem for first-order logic [2]. The
finitary version of Ramsey’s theorem can be proven from the infinitary version with the help
of the compactness theorem. In this paper, I will explain that proof.

Let’s begin with a classic version of a special case of Ramsey’s theorem: Suppose there
are six people in a room. Then either there are three people in the room all of whom know
each other, or there are three people in the room none of whom know each other.

Here is another version of the same mathematical fact: Draw six points arranged in a
hexagon, draw all the line segments connecting pairs of those points, and color each line
segment red or blue. Then your drawing will contain either a red triangle or a blue triangle.
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This is a version of the same fact, because we can let the points represent people, the red
lines connect people who know each other, and the blue lines connect people who do not
know each other.

The mathematical fact is this: If X is any set of size 6 or greater, and the collection
of (unordered) pairs from X is partitioned into two pieces (for example, acquainted and
unacquainted, or red and blue), then there is a subset Y ⊂ X of size 3, such that all the
two-element subsets of Y are in the same piece.

To prove this, let’s consider the colored line segment version: X consists of six points,
each pair of elements of X determines a line segment connecting those two points, and each
line segment is colored red or blue. We will find either a red triangle or a blue triangle.

Pick any point P to start with. There are five line segments connecting P to the other
five points, so at least three of them must be the same color.
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Suppose the line segments connecting P to Q1, Q2, and Q3 are all red.
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If all the line segments with endpoints Qi and Qj are blue, then Q1, Q2, and Q3 are the
corners of a blue triangle. If not, say the line segment between Q1 and Q2 is red.
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Then P , Q1, and Q2 are the corners of a red triangle.
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The finitary version of Ramsey’s theorem is a generalization of the fact we have just
proved. In Section 2, I will give some definitions and state both the finitary and the infinitary
versions of Ramsey’s theorem. In Section 3, I will give a proof of the infinitary version, and in
Section 4, I will use the compactness theorem to prove the finitary version from the infinitary
version.

2 Definitions

To state the general fact of which we have seen a special case, we need some definitions.

Definition 2.1. Let n and k be positive natural numbers.
If X is any set, X [n] denotes the collection of n-element subsets of X:

X [n] = {Y ⊆ X | size(Y ) = n}.

A coloring of X [n] in k colors is a function f : X [n] → C, where C is a k-element set. We
call the elements of C colors, and we think of f as assigning a color to each n-element subset
of X.
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An n-coloring of X is a coloring of X [n]. That is, it assigns to each n-element subset of
X a color, chosen from some set C of colors.

If f is an n-coloring of X, a subset Y ⊆ X is homogeneous or monochromatic for f if
there is some i ∈ C such that, for every s ∈ Y [n], we have f(s) = i. We call Y monochromatic
because all n-element subsets of Y have the same color i.

In the terms of this definition, the fact we proved in Section 1 is the following: If X is
any set of size at least 6, then for every 2-coloring of X in 2 colors, there is a monochromatic
subset Y of size 3.

Theorem 2.2 (Finitary Ramsey’s Theorem (Ramsey, 1930) [3]). For all positive natural
numbers n, k, and a, there is a natural number b such that if X is any set of size at least b,
then for every n-coloring of X in k colors, there is a monochromatic subset Y ⊆ X of size
a.

Finitary Ramsey’s theorem says that you may arbitrarily choose the size n of the sets
that are assigned colors, the number k of colors, and the size a of the (finite) monochromatic
set you want. Then there is a (finite) number b large enough so that if your initial set X has
size at least b, you are guaranteed to have a monochromatic set of size a.

Infinitary Ramsey’s theorem says that you can always get an infinite monochromatic set
Y , as long as you start with an infinite set X.

Theorem 2.3 (Infinitary Ramsey’s Theorem (Ramsey, 1930) [3]). For all positive natural
numbers n and k, for every n-coloring of an infinite set X in k colors, there is an infinite
monochromatic subset Y ⊆ X.

It is possible to prove finitary Ramsey’s theorem without reference to the infinitary
version, but it is a complicated proof. It is easier to prove the infinitary version, and then
apply the compactness theorem.

3 Infinitary Ramsey’s Theorem

Infinitary Ramsey’s theorem says that for all positive natural numbers n and k, for every
n-coloring of an infinite set X in k colors, there is an infinite monochromatic subset Y ⊆ X.
We prove this by induction on n.

For n = 1, the theorem states that if we color all the elements of an infinite set X in
finitely many colors, then there is an infinite Y ⊆ X all of whose elements are the same
color. This is true; if we partition an infinite set into finitely many pieces, one of those pieces
must be infinite.

Before giving the inductive step, let’s look at the special case where n = 2 and X = N. We
can represent a two-element subset of N as an ordered pair (x, y) where we list the smaller
element first; geometrically, as a point in the plane above the diagonal line x = y. The
picture below illustrates a coloring f of N[2] in two colors, red (R) and blue (B). (The black
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numbers label the rows and columns.) The theorem says there is an infinite monochromatic
subset H ⊆ N.

8 R R B R B B R R
7 R B B B R B B
6 B R B B R B
5 B R R B R
4 R B R R
3 R B R
2 R R
1 B
0

0 1 2 3 4 5 6 7

For this coloring, H = {0, 7, 20, 24, 30, 34, 55, 56, 81, . . . } is monochromatic in color red.
If we restrict our picture to only the rows and columns corresponding to numbers in H, we
see the elements of H [2].

81 R R R R R R R R
56 R R R R R R R
55 R R R R R R
34 R R R R R
30 R R R R
24 R R R
20 R R
7 R
0

0 7 20 24 30 34 55 56

We will construct a monochromatic set H. First, we construct a preliminary set Y =
{x0, x1, . . . , xj . . . }, and a function c : Y → {R,B}.

Begin by setting x0 = 0. The points in the 0-column represent sets {0,m} with m > 0.
Since there are infinitely many points in this column, either infinitely many of them are red
or infinitely many of them are blue. Say infinitely many are red.

Let X0 be the set of numbers that pair with 0 to make a red set:

X0 = {m ∈ N− {0} | f({0,m}) = R} = {2, 3, 4, 7, . . . }.

Geometrically, m is in X0 just in case R appears in the mth place of the 0-column.
In the following picture, the numbers in rows and columns corresponding to elements of

{0} ∪X0 have been boxed. These are the zero row and the rows in which an R appears in
the 0-column (rows 0,2,3,4,7,. . . ), and the corresponding columns (columns 0,2,3,4,7,. . . ) .
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8 R R B R B B R R

7 R B B B R B B
6 B R B B R B
5 B R R B R

4 R B R R

3 R B R

2 R R
1 B

0

0 1 2 3 4 5 6 7

In the next picture, only the rows and columns corresponding to elements of {0} ∪ X0

(the boxed items) have been retained. Now the 0-column is entirely red.

14 R B B B B R R R
11 R B R R R B R
10 R R B B R B
8 R B R B R
7 R B B R
4 R R R
3 R R
2 R

0

0 2 3 4 7 8 10 11

Because the 0-column is red, we assign the color red to 0; set c(0) = R.
Now, we choose our next element of Y . Let x1 be the smallest element of X0; that is, set

x1 = 2. The points in the 2-column represent sets {2,m} with m ∈ X0 and m > 2. Since
there are infinitely many such points, either infinitely many of them are red or infinitely
many of them are blue. Say infinitely many are blue.

Let X1 be the set of numbers in X0 that pair with x1 (that is, with 2) to make a blue
set:

X1 = {m ∈ X0 − {x1} | f({x1,m}) = B} = {7, 8, 11, . . . }.

Since x1 pairs with elements of X1 to make blue sets, we assign it color blue; set c(2) = B.
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14 R B B B B R R R

11 R B R R R B R
10 R R B B R B

8 R B R B R

7 R B B R
4 R R R
3 R R

2 R

0

0 2 3 4 7 8 10 11

23 R B R R B B R R
20 R B R B B B B
18 R B R R R R
14 R B B R R
11 R B R B
8 R B R
7 R B

2 R

0

0 2 7 8 11 14 18 20

Now we continue in the same way to choose the remaining elements of Y :

xj = min(Xj−1);

Xj =

{
{m ∈ Xj−1 − {xj} | f({xj,m}) = R} if this is infinite;

{m ∈ Xj−1 − {xj} | f({xj,m}) = B} otherwise;

c(xj) =

{
R

B
respectively.

Let Y = {x0, x1, x2, . . . , xj, . . . }. If we restrict to the rows and columns corresponding to
elements of Y , each column has only one color. The color of the j-column is c(j).

30 R B R B B R B R
24 R B R B B R B
23 R B R B B R
20 R B R B B
11 R B R B
8 R B R
7 R B
2 R
0

0 2 7 8 11 20 23 24

Either there are infinitely many red columns or there are infinitely many blue columns.
Say there are infinitely many red columns. Then

H = {m ∈ Y | the m-column is red } = {m ∈ Y | c(m) = R}

is infinite.
The next picture on the left indicates rows and columns corresponding to elements of H,

and the one on the right retains only those rows and columns.
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30 R B R B B R B R

24 R B R B B R B
23 R B R B B R

20 R B R B B
11 R B R B
8 R B R

7 R B
2 R

0

0 2 7 8 11 20 23 24

81 R R R R R R R R
56 R R R R R R R
55 R R R R R R
34 R R R R R
30 R R R R
24 R R R
20 R R
7 R
0

0 7 20 24 30 34 55 56

H is an infinite monochromatic set in color R.

This argument illustrates the inductive step of the proof. Every time we say “there must
be infinitely many red points or infinitely many blue points,” we are using the fact that for
every 1-coloring of an infinite set in 2 colors there is an infinite monochromatic set. That is,
we are using the inductive hypothesis for 1-colorings to prove the theorem for 2-colorings.

For the inductive step of the proof of infinitary Ramsey’s theorem, assume as inductive
hypothesis that for every n-coloring of an infinite set in k colors there is an infinite monochro-
matic set, and let f : X [n+1] → C be an (n+ 1)-coloring of an infinite set X in k colors. We
must show there is an infinite monochromatic set for f .

As before, we will first construct a preliminary set Y = {x0, x1, . . . , xj, . . . } and a function
c : Y → C.

Let X−1 = X.
Suppose Xj−1 has been defined. Let xj be any element of Xj−1. Let Yj−1 = Xj−1−{xj}.

We define an n-coloring of Yj−1, a function fj : (Yj−1)
[n] → C, as follows:

fj({y1, . . . , yn}) = f({xj, y1, . . . , yn}).

Then, by the inductive hypothesis, we let Xj ⊆ Yj−1 be an infinite set monochromatic for
fj in some color i ∈ C, and we set c(xj) = i. That is, Xj is an infinite subset of Xj−1, all of
whose n-element subsets join with xj to form (n+ 1)-element sets of color c(xj).

Let
Y = {xj | j ∈ N}.

By construction, we have X = X−1 ⊇ X0 ⊇ X1 ⊇ · · · , and for j < ` we have x` ∈ X`−1 ⊆ Xj.
Suppose {xj, x`(1), . . . , x`(n)} is an (n+ 1)-element subset of Y , ordered so j < `(1) · · · <

`(n). Because {x`(1), . . . , x`(n)} ⊂ Xj, by our choice of Xj, we have f({xj, x`(1), . . . , x`(n)}) =
c(xj). That is, if F is any (n+ 1)-element subset of Y and j is the smallest index such that
xj ∈ F , then f(F ) = c(xj).

Because Y is infinite and C is finite, we can choose a color i ∈ C such that the set
{xj ∈ Y | c(xj) = i} is infinite. Choose such a color, and let

H = {xj ∈ Y | c(xj) = i}.
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Because H ⊆ Y , if F is any (n + 1)-element subset of H and j is the smallest index such
that xj ∈ F , then f(F ) = c(xj). But since xj ∈ H, we have c(xj) = i, so f(F ) = i. That is,
H is an infinite monochromatic set in color i.

This completes the proof of infinitary Ramsey’s theorem.

You might have noticed that this proof requires making infinitely many arbitrary choices
of elements xk ∈ Xk−1 and of monochromatic sets Xk, and therefore it seems to require the
axiom of choice. It does. The proof does not actually use the full axiom of choice, but a
weak version, called the axiom of dependent choice. However, if the axiom of dependent
choice is false, it is possible for infinitary Ramsey’s theorem to be false as well.

4 Finitary Ramsey’s Theorem

Recall the statement of finitary Ramsey’s theorem:

For all positive natural numbers n, k, and a, there is a natural number b such
that if X is any set of size at least b, then for every n-coloring of X in k colors,
there is a monochromatic subset Y ⊆ X of size a.

We wish to prove this from infinitary Ramsey’s theorem and the compactness theorem for
first-order logic.

Before stating the compactness theorem, I will need a couple of definitions. (These
definitions, and other facts about first-order logic, can be found in Enderton’s textbook [1].)
A structure is a model for a set of sentences Γ, or satisifies Γ, if every sentence in Γ is true
in that structure. For example, a model of the group axioms is a group. A set of sentences
Γ is satisfiable if it has a model, and finitely satisfiable if every finite subset has a model.

Compactness Theorem (Gödel, 1929) [2]: Every finitely satisfiable set of sentences
(in a countable first-order formal language) is satisfiable.

We will use this to prove finitary Ramsey’s theorem from infinitary Ramsey’s theorem.
Suppose that finitary Ramsey’s theorem is false. Then there are positive natural numbers

n, k, and a, such that

(*) For all natural numbers b, there is a set X of size at least b and there is an
n-coloring of X in k colors with no monochromatic subset Y ⊆ X of size a.

We will use this to produce a certain finitely satisfiable set of sentences Γ. From the compact-
ness theorem, we will conclude that Γ is satisfiable, and from infinitary Ramsey’s theorem, we
will conclude that Γ is not satisfiable. This contradiction proves finitary Ramsey’s theorem.

First we define the set of sentences Γ. Let L be the first-order language with equality and
n-place predicate symbols P1, . . . , Pk. We intend Pix1 . . . xn to mean “the set {x1, . . . , xn}
has color i.”
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Let ψ be a sentence saying that the Pi define a coloring of n-element sets. I will leave the
technical details to the end of the proof. Roughly, ψ says that the truth of Pix1 . . . xn does
not depend on the order in which the xj are presented (the Pi define a coloring of n-element
sets, not of ordered n-tuples), Pix1 . . . xn does not hold if any two of the xj are equal (only
sets of size exactly n are colored), and if no two of the xj are equal then exactly one of
P1x1 . . . xn, P2x1 . . . xn, . . . , Pkx1 . . . xn holds (each n-element set is assigned a unique color).

For each natural number b, let σb be a sentence asserting the existence of at least b-many
elements. Let γ be a sentence that says no a-element set is monochromatic. Again, I leave
the technical details to the end of the proof.

Let
Γb = {ψ, γ, σ0, σ1, . . . , σb}.

A model of Γb is a set of size at least b with an n-coloring in k colors, and with no monochro-
matic subset of size a. Our assumption

(*) for all natural numbers b, there is a set X of size at least b and there is an
n-coloring of X in k colors with no monochromatic subset Y ⊆ X of size a

asserts that every Γb has a model; every Γb is satisfiable.
Now let

Γ =
⋃
b∈N

Σb = {ψ, γ, σ0, σ1, . . . , σb, . . . }.

A model of Γ is an infinite set with an n-coloring in k colors, and with no monochromatic
subset of size a. Because every finite subset of Γ is contained in some Γb, every finite subset
has a model; Γ is finitely satisfiable. By the compactness theorem, therefore, Γ is satisfiable.

Suppose, then, that the infinite set X with coloring f is a model of Γ. That is, there is no
monochromatic a-element subset of X. By infinitary Ramsey’s theorem, however, X must
have an infinite monochromatic subset H. Every a-element subset of H is monochromatic.
This is a contradiction.

To complete the proof of finitary Ramsey’s theorem, it remains only to give the details
of the definitions of ψ, γ, and σb.

The symbol ∧ denotes the conjunction of two formulas; (α ∧ β) means “α and β.” The

symbol
∧

denotes the conjunction of a finite collection of formulas;
∧

1≤i<j≤3

αi,j means “α1,2

and α1,3 and α2,3.” Similarly, ∨ and
∨

denote disjunction (inclusive or).

Definition 4.1 (definition of ψ). For 1 ≤ i ≤ k, let τi be a sentence that says Pix1 . . . xn

holds only if the xj are all distinct (sets of size less than n are not colored), and that the
truth or falsity of Pix1 . . . xn does not depend on the ordering of the xj (whether {x1, . . . , xn}
has color i does not depend on the order in which the elements are listed). For n = 2, the
sentence τi is

∀x∀y ((Pixy → x 6= y) ∧ (Pixy ↔ Piyx)) .
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In general, the sentence τi is

∀x1 . . . ∀xn

((
Pix1 . . . xn →

∧
1≤`<j≤n

x` 6= xj

)
∧

∧
g∈Sn g 6=id

(Pix1 . . . xn ↔ Pixg(1) . . . xg(n))

)
,

where Sn is the set of all permutations (reorderings) of {1, 2, . . . , n}.
For 1 ≤ i, j ≤ k, i 6= j, let ρi,j be a sentence that says if Pi holds, then Pj does not (no

set can be colored both color i and color j). The sentence ρi,j is

∀x1 . . . ∀xn(Pix1 . . . xn → ¬Pjx1 . . . xn).

Let π be a sentence that says at least one Pi holds for every n-element set (every n-element
set is colored with some color). For n = 2 and k = 3, the sentence π is

∀x∀y (x 6= y → P1xy ∨ P2xy ∨ P3xy) .

In general, the sentence π is

∀x1 . . . ∀xn

( ∧
1≤`<j≤n

x` 6= xj →
∨

1≤i≤k

Pix1 . . . xn

)
.

Let ψ be the conjunction of the τi, the ρi,j, and π. Then ψ says that the Pi define a
coloring of n-element sets. In any model of ψ, the coloring is determined by defining the
color of {a1, . . . , an} to be the unique i such that the model satisfies the formula Piv1, . . . , vn

when the variables v1, . . . , vn are assigned to the elements a1, . . . , an.

Definition 4.2 (definition of γ). For 1 ≤ i ≤ k, let ϕi(x1, . . . , xa) say that {x1, . . . , xa} has
a subset for which Pi holds; that is, the color i appears in this set. For n = 2 and a = 4, the
formula ϕi(x1, x2, x3, x4) is

Pix1x2 ∨ Pix1x3 ∨ Pix1x4 ∨ Pix2x3 ∨ Pix2x4 ∨ Pix3x4.

In general, the formula ϕi(x1, . . . , x1) is∨
1≤j(1)<j(2)<···<j(n)≤a

Pixj(1)xj(2) . . . xj(n).

Now let γ be a sentence that says there is no monochromatic set of size a; that is, in any set
of size a, at least two distinct colors appear. The sentence γ is

∀x1 . . . ∀xa

( ∧
1≤`<j≤a

x` 6= xj →
∨

1≤h<i≤k

(
ϕh(x1, . . . , xa) ∧ ϕi(x1, . . . , xa)

))
.

A model of {ψ, γ} is a set with an n-coloring in k colors for which there is no monochro-
matic set of size a.
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Definition 4.3 (definition of σb). For each natural number b ≥ 2, let σb be a sentence that
says there are at least b elements: σ0 is ∀x(x = x), σ1 is ∃x(x = x), and for b ≥ 2, σb is

∃x1 . . . ∃xm

∧
1≤i<j≤m

(xi 6= xj).

Any structure satisfying σb has at least b-many elements, and any structure satisfying all
the σb is infinite.

This completes the proof of finitary Ramsey’s theorem.

5 Final Comments

While this proof is easier than the direct proof of finitary Ramsey’s theorem, the direct proof
has some advantages as well. Most notably, from the direct proof, you can begin to answer
the question of how big b must be, for a given n, k, and a. (The answer is, very big indeed.)

Arguments from the compactness theorem, like this one, are not uncommon in some areas
of combinatorics; in particular, in generalized Ramsey theory.
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Notes for Math 69 authors:
You need not go as far as I did in explaining your notation. That is, you may assume

your reader knows about first-order languages, and understands the basic notation in our
textbook. Think of your reader as another student in the class, who may not understand
the material quite as well as you do,1 and who of course does not know anything about the
specific problem you are writing about. I intended this paper for a possibly wider audience.

Pictures and diagrams can be helpful sometimes. However, unless you have time on your
hands and are up for a project, you don’t need to learn how to draw them electronically.
Hand-drawn pictures, provided they are clear and neat, are perfectly acceptable.

The authorial “we” and the authorial “I” are both acceptable, although you should be
consistent. Most people will tell you to use one or the other. In this paper, I used both, but
(I hope) consistently; I used “I” when talking about authorial choices (“I will leave these
details for later,”) and “we” in proofs, implicitly assuming the reader is thinking through
the proof along with me (“We have obtained a contradiction.”) This is my own peculiarity,
which you probably shouldn’t emulate unless you feel very comfortable with it.

There is some debate about whether one should write “Ramsey’s theorem” or “Ramsey’s
Theorem,” but the first seems more standard in modern usage.

The citation style I used is standard for mathematics papers. You may use this, or any
footnote or endnote style you are used to, as long as you are consistent and include a list
of references. You may not use a style that places citations parenthetically in the text;
mathematics is hard enough to read without cluttering it up with things that could very
well go elsewhere.

Most of what you need to know about format and style is addressed in one of the pa-
pers linked to from the course web page. It is described as a paper about how to write a
mathematics paper, and you can find the link on the General Information page under Exams.

Excellent mathematical writing style embodies several characteristics, of which the three
most important are clarity, clarity, and clarity. It is important to use words precisely and
correctly. Generally, simple declarative sentences and consistent word use are preferable to
variation in sentence structure and vocabulary. The same is true of most technical writing;
the deeper and more complex the ideas, the more simple the writing should be. My favorite
quotation about this comes from the web page “Guidelines for Writing a Phiilosophy Paper”
by NYU philosophy professor James Pryor:2

If your paper sounds as if it were written for a third-grade audience, then you’ve
probably achieved the right sort of clarity.

1Even if you think you are the worst student in the class, assume your reader does not understand things
as well as you do. It will enhance the clarity of your prose.

2http://www.jimpryor.net/teaching/guidelines/writing.html
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