Homework 2: Due Wednesday, April 16

Section 3.2: $\# 6,10,13,18,34 \mathrm{a}$
Section 2.2: \#12, 14
Problem 1: An anagram of a word is a rearrangement of the letters. For example, $P L P E A$ is an anagram of $A P P L E$. How many anagrams are there of MISSISSIPPI?

Problem 2: In poker, a straight is 5 cards which can be placed in ascending order in which no ranks are skipped. For example, the hand consisting of

- 8 of hearts
- 9 of clubs
- 10 of clubs
- Jack of spades
- Queen of hearts
is a straight. Suppose that an Ace can be considered as either having rank 1, or as having rank just above a king (but it is not allowed to "wrap around" from King, Ace, Two). What is the probability of getting dealt a straight?

Problem 3: Recall that a flush in poker is a hand in which all five of your cards have the same suit. Suppose that you are playing a game of poker in which each 2 is a "wild card". That is, you can take each 2 to represent any other card. For example, if you have three hearts, the 2 of spades, and the 2 of diamonds, then this would be considered a flush because we can pretend that the two 2's are other hearts. What is the probability of getting dealt a flush? How much more likely is this than the probability of getting dealt a flush when there are no wild cards?

Problem 4: By the Binomial Theorem, we know that for every real number x and every natural number n we have

$$
(x+1)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}
$$

Use this to show that

$$
\binom{n}{1}+2\binom{n}{2}+\cdots+n\binom{n}{n}=\sum_{k=1}^{n} k\binom{n}{k}=n 2^{n-1}
$$

for every n.
Problem 5: Use Stirling's Approximation to n ! to show that

$$
\lim _{n \rightarrow \infty} \frac{b\left(2 n, \frac{1}{2}, n\right)}{\frac{1}{\sqrt{\pi n}}}=1
$$

In other words, if $f(n)$ is the probability of getting exactly n heads when we flip a fair coin $2 n$ times, then the function f behaves very much like the function $g(n)=\frac{1}{\sqrt{\pi n}}$ for large values of n.

