Notes for Lecture 1

Definition: A binary relation, * on a set S is a rule that assigns to each ordered pair $(a, b) \in S$ a value a * b = v such that:

i) $v \in \mathbf{S}$ [We say **S** is *closed* under *.] ii) If a * b = c and a * b = d then c = d [We say this means that * is *well-defined*.]

Example: Addition, multiplication, subtraction, and exponentiation are binary operations on the integers, but division is not.

Definition: A *free semi-group* \mathbf{F} on a set \mathbf{S} is the set of all strings of elements in \mathbf{S} with the binary operation of concatenation.

 ${\bf Notation}$: We will use the symbol ϕ to denote the "empty string"

•

 $\mathbf{Example}:$ If $\mathbf{S}=\{a\}$ then the free semigroup on \mathbf{S} would have the elements:

 ϕ a aa aaa aaaa,...

Example: if $S = \{a, b\}$ then all the following would be elements in the free group on F: ϕ a b aa ab ba ba bb...

Example: In the above case the following multiplications would occur:

aa * b = aab a * a = aa $\phi * aba = aba$ abb * ab = abbab

Definition: A *Finitely-Generated Semigroup* is a set of equivalence classes induced by adding a set of relations to a *Free Semigroup* on a finite set S.

Example: Let $S = \{a\}$ and let T be the *finitely-generated semigroup* on S with the set of relations $R = \{aaa = a\}$, then there are exactly 3 elements in $T : [\phi], [a], [aa]$.

Example: Let $\mathbf{S} = \{a, b\}$ and let \mathbf{T} be the *finite-generated semigroup* on \mathbf{S} with the set of relations $\mathbf{R} = \{aab = b, ba = b, bb = b\}$. Then the elements of Tare $[\phi], [ab], [b], [a], [aa], [aaa], \ldots$

Note: The *Free Semigroup* on **S** is the same thing as *Finitely Generated Semigroup* on **S** with set of relations {}. This is why is called "Free." It is "Free" of relations.

Definition: A Free Group **G** on a set **X** is obtained by taking the free semigroup on **S**, where **S** has two elements, r and \hat{r} , for each $r \in X$, and adding the relations $\{\hat{a}a = a\hat{a} = \phi | a \in X\}$.