Primality Testing and Factorization

Eli Howey

MATH 56
Dartmouth College

May 27, 2014

RSA: Background

Ron Rivest, Adi Shamir, and Leonard Adleman (1977)

RSA: Background

Ron Rivest, Adi Shamir, and Leonard Adleman (1977)
Premise

RSA: Background

Ron Rivest, Adi Shamir, and Leonard Adleman (1977)
Premise

m Two keys (exponents): public and private

RSA: Background

Ron Rivest, Adi Shamir, and Leonard Adleman (1977)
Premise

m Two keys (exponents): public and private

m Requires Euler ¢ function and multiplicative inverse

RSA: Algorithm

Randomly choose two distinct primes p and g of
approximately equal size.

RSA: Algorithm

Randomly choose two distinct primes p and g of
approximately equal size.

Compute n = pq.

RSA: Algorithm

Randomly choose two distinct primes p and g of
approximately equal size.

Compute n = pq.
Compute ¢(n) = ¢(p)d(q) = (p—1)(g — 1).

RSA: Algorithm

Randomly choose two distinct primes p and g of
approximately equal size.

Compute n = pgq.

Compute ¢(n) = ¢(p)¢(q) = (p—1)(g — 1).

Choose e € Z with ged(e, ¢(n)) = 1. If e is prime, then one
must only check that e t ¢(n).

RSA: Algorithm

Randomly choose two distinct primes p and g of
approximately equal size.

Compute n = pgq.

Compute ¢(n) = ¢(p)¢(q) = (p—1)(g — 1).

Choose e € Z with ged(e, ¢(n)) = 1. If e is prime, then one
must only check that e t ¢(n).

Find the multiplicative inverse d = e™! mod ¢(n).

RSA: Algorithm

DA N

Randomly choose two distinct primes p and g of
approximately equal size.

Compute n = pgq.

Compute ¢(n) = ¢(p)¢(q) = (p—1)(g — 1).

Choose e € Z with ged(e, ¢(n)) = 1. If e is prime, then one
must only check that e t ¢(n).

Find the multiplicative inverse d = e™! mod ¢(n).

The public key is defined as the pair (e, n), and the private
key as (d, n).

RSA: Encryption/Decryption

Given a message M, 0 < M < n (or ciphertext C):

RSA: Encryption/Decryption

Given a message M, 0 < M < n (or ciphertext C):
m Encryption: E(M) = M® mod n (only requires public key)

RSA: Encryption/Decryption

Given a message M, 0 < M < n (or ciphertext C):
m Encryption: E(M) = M® mod n (only requires public key)
m Decryption: D(C) = M9 mod n (requires private key)

RSA: Encryption/Decryption

Given a message M, 0 < M < n (or ciphertext C):
m Encryption: E(M) = M® mod n (only requires public key)
m Decryption: D(C) = M9 mod n (requires private key)
Private key functionally impossible to crack without p, g

Primality Testing

Two major (deterministic) methods:

Primality Testing

Two major (deterministic) methods:
m Trial division

Primality Testing

Two major (deterministic) methods:

m Trial division
m O(n*/2Inn (Inln n)?)

Primality Testing

Two major (deterministic) methods:
m Trial division
m O(n*/2Inn (Inln n)?)
m Best for n < 100

Primality Testing

Two major (deterministic) methods:

m Trial division
m O(n*/2Inn (Inln n)?)
m Best for n < 1010

m Sieve of Eratosthenes

Primality Testing

Two major (deterministic) methods:
m Trial division
m O(n*/2Inn (Inln n)?)
m Best for n < 100
m Sieve of Eratosthenes
m O(InInn) per sieve element

Primality Testing

Two major (deterministic) methods:
m Trial division
m O(n*/2Inn (Inln n)?)
m Best for n < 100
m Sieve of Eratosthenes

m O(InIn n) per sieve element
m Good for n < 102, but segmenting can extend range

Factorization Methods

Covers four method classes

Factorization Methods

Covers four method classes
m Methods covered in class

m Trial division (sieve implementation)
m Fermat's method

Factorization Methods

Covers four method classes
m Methods covered in class

m Trial division (sieve implementation)
m Fermat's method

m Probabilistic: Pollard p method

Factorization Methods

Covers four method classes
m Methods covered in class

m Trial division (sieve implementation)
m Fermat’s method

m Probabilistic: Pollard p method
m Quadratic sieve (QS) & number field sieve (NFS)

Factorization Methods

Covers four method classes
m Methods covered in class

m Trial division (sieve implementation)
m Fermat’s method

m Probabilistic: Pollard p method
m Quadratic sieve (QS) & number field sieve (NFS)
m Factoring multiple RSA keys with Batch GCD

Pollard p method: Premise

Let n € ZT be composite with least prime factor p.
S={1,2,...,p—1} f(x)=x*+a mod p,ac S
For all s € S, the sequence

5, £(), F(F(5)), .
eventually becomes cyclic (after O(,/p) iterations).
F(x)=x?>+a mod n=f(x) modp

[Floyd] 3i such that 2i = O(,/p) and F()(s) = F@)(s) mod p
— ged(FU)(s) — F)(s), n) is a factor (if # n)

Pollard p method: Algorithm

Randomly choose integers a € [1,n — 3] and s € [0,n — 1].

Pollard p method: Algorithm

Randomly choose integers a € [1,n — 3] and s € [0,n — 1].
Define F(x) = (x> +a) mod n.

Pollard p method: Algorithm

Randomly choose integers a € [1,n — 3] and s € [0,n — 1].
Define F(x) = (x> +a) mod n.
Set U=V =s.

Pollard p method: Algorithm

Randomly choose integers a € [1,n — 3] and s € [0,n — 1].
Define F(x) = (x> +a) mod n.

Set U=V =s.

Iterate U and V as follows:

m U=F(U),
n V=FO(V).

Pollard p method: Algorithm

Randomly choose integers a € [1,n — 3] and s € [0,n — 1].
Define F(x) = (x> +a) mod n.

Set U=V =s.

Iterate U and V as follows:

m U=F(U),
n V=FO(V).

Calculate g = ged(U — V, n).

Pollard p method: Algorithm

Randomly choose integers a € [1,n — 3] and s € [0,n — 1].
Define F(x) = (x> +a) mod n.

Set U=V =s.

Iterate U and V as follows:

m U=F(U),
n V=FO(V).

Calculate g = ged(U — V, n).
@ If g =1, go back to Step 4. If g = n, go back to Step 1.

Pollard p method: Algorithm

Randomly choose integers a € [1,n — 3] and s € [0,n — 1].
Define F(x) = (x> +a) mod n.

Set U=V =s.

Iterate U and V as follows:

m U=F(U),
n V=FO(V).

Calculate g = ged(U — V, n).
@ If g =1, go back to Step 4. If g = n, go back to Step 1.
Return g.

Pollard p method: Runtime

m Step 4 iteration occurs < 3O(,/p) times
m O(Inninlinn) per iteration

Pollard p method: Runtime

m Step 4 iteration occurs < 3O(,/p) times
m O(Inninlinn) per iteration

Total runtime:

O(p*?Innininn) =~ O(n*’*In ninin n)

Pollard p method: Runtime

m Step 4 iteration occurs < 3O(,/p) times
m O(Inninlinn) per iteration

Total runtime:
O(p*?Innininn) =~ O(n*’*In ninin n)

Probabilistic (choice of a and s affects result)

Quadratic Sieve (QS)

Establish quadratic congruence among products of B-smooth
candidates
x>=y? modn

Quadratic Sieve (QS)

Establish quadratic congruence among products of B-smooth

candidates

x>=y? modn

Optimal B [Pomerance]:

1
B =~ exp(ivln nininn)

Quadratic Sieve (QS)

Establish quadratic congruence among products of B-smooth
candidates
x>=y? modn

Optimal B [Pomerance]:

1
B =~ exp(ivln nininn)

Runtime:

O(B?) ~ L(n) = O(exp(VIn ninin n))

NFS: Number Fields

Let f be a polynomial with coeffs. in Z, degree k, root r € C.

f is irreducible if f cannot be expressed as the product of two
polynomials with coeffs. in Z, degree < k. If f is irreducible, we
can define the polynomial ring (number field)

Zlr] = {Ck—lrk_1+"'+C1r+C0 ER|w,c1,...,ck—1 €EZ}

Multiplication in Z[r]: polynomial multiplication, then reduction
mod rk

NFS: Concept

Establish quadratic congruence among products of B-smooth
products of polynomials in Z[x]

uv>=v2 mod n,

where v2 is the product of a — bm for pairs (a, b) such that
F(a, b)G(a, b) is B-smooth, and m an approximate root of n

NFS: Algorithm

Setup:
m Set d = |[(3Inn/Ininn)].
m Set B = [exp((8/9)Y3(In n)Y/3(Inln n)?/3)] .1
m Set m= |n%/9].
m Write nin base m: n=m? 4+ cg_im? 1+ + .
m Define f(x) = x? + cg_1x971 +--- + co. Note f(m) = n.
m Attempt to factor f into irreducible polynomials g, h € Z[x]
and, if it factors, return n = g(m)h(m).
m Define F(x,y) = x9 + cg_1x9 7y + - + coy?.
m Define G(x,y) = x — my.

!The values of d and B can be tuned to taste; these are experimentally
determined optimal values [Pomerance].

NFS: Algorithm

Setup (continued):

m Compute R(p) ={re€[0,p—1]| f(r) =0 mod p} for each
prime p < B.

m Set k= [3lgn|.

m Set B' =3 g #R(p)
mSet V=1+n7(B)+ B +k.
m Set M = B.

NFS: Algorithm

Sieve for a set S’ of (at least) V + 1 coprime integer pairs
(a, b) with 0 < |a|, b < M, and F(a, b)G(a, b) B-smooth. If
this fails, increase M and retry this step.

NFS: Algorithm

Sieve for a set S’ of (at least) V + 1 coprime integer pairs
(a, b) with 0 < |a|, b < M, and F(a, b)G(a, b) B-smooth. If
this fails, increase M and retry this step.

Create an exponent matrix from the pairs from Step 2. Each
row will be the exponent vector for a — ba: for some root a of

f.

NFS: Algorithm

Sieve for a set S’ of (at least) V + 1 coprime integer pairs
(a, b) with 0 < |a|, b < M, and F(a, b)G(a, b) B-smooth. If
this fails, increase M and retry this step.

Create an exponent matrix from the pairs from Step 2. Each
row will be the exponent vector for a — ba: for some root a of
f.

Use linear algebra to find a subset S of S’ whose elementwise
sum is the zero vector (e.g., Block Lanczos).

NFS: Algorithm

Sieve for a set S’ of (at least) V + 1 coprime integer pairs
(a, b) with 0 < |a|, b < M, and F(a, b)G(a, b) B-smooth. If
this fails, increase M and retry this step.

Create an exponent matrix from the pairs from Step 2. Each
row will be the exponent vector for a — ba: for some root a of
f.

Use linear algebra to find a subset S of S’ whose elementwise
sum is the zero vector (e.g., Block Lanczos).

Compute v such that], ,)es(a — bm) = v2 mod n.

NFS: Algorithm

o]

Sieve for a set S’ of (at least) V + 1 coprime integer pairs

(a, b) with 0 < |a|, b < M, and F(a, b)G(a, b) B-smooth. If
this fails, increase M and retry this step.

Create an exponent matrix from the pairs from Step 2. Each
row will be the exponent vector for a — ba: for some root a of
f.

Use linear algebra to find a subset S of &’ whose elementwise
sum is the zero vector (e.g., Block Lanczos).

Compute v such that], ,)es(a — bm) = v2 mod n.

Find a 7y in Z[«] such that (f’(m)2 [pyes(a— bm)) =2
mod n.

NFS: Algorithm

o]

Sieve for a set S’ of (at least) V + 1 coprime integer pairs

(a, b) with 0 < |a|, b < M, and F(a, b)G(a, b) B-smooth. If
this fails, increase M and retry this step.

Create an exponent matrix from the pairs from Step 2. Each
row will be the exponent vector for a — ba: for some root a of
f.

Use linear algebra to find a subset S of &’ whose elementwise
sum is the zero vector (e.g., Block Lanczos).
Compute v such that], y)es(a — bm) = v
Find a v in Z[«] such that (f’(m)2 [pyes(a— bm)) =2
mod n.

Compute u = ¢(y) mod n, where ¢ : Z[x] — Z/nZ a
homomorphism.

2 mod n.

NFS: Algorithm

o]

[~

Sieve for a set S’ of (at least) V + 1 coprime integer pairs

(a, b) with 0 < |a|, b < M, and F(a, b)G(a, b) B-smooth. If
this fails, increase M and retry this step.

Create an exponent matrix from the pairs from Step 2. Each
row will be the exponent vector for a — ba: for some root a of
f.

Use linear algebra to find a subset S of &’ whose elementwise
sum is the zero vector (e.g., Block Lanczos).

Compute v such that], ,)es(a — bm) = v2 mod n.

Find a 7y in Z[«] such that (f’(m)2 [pyes(a— bm)) =2
mod n.

Compute u = ¢(y) mod n, where ¢ : Z[x] — Z/nZ a
homomorphism.

Return ged(u — f'(m)v, n).

NFS: Runtime

Complexity given heuristically [Pomerance], proof eludes us!

0] (exp (i/? + o(l)) (Inn)3(InIn n)2/3>

Compare to quadratic sieve:

O(exp(VInnininn))

Batch GCD

m RSA keys may be created using faulty prime number
generators

Batch GCD

m RSA keys may be created using faulty prime number
generators

m If two keys share a factor, then we can factor both keys!

Batch GCD

m RSA keys may be created using faulty prime number
generators

m If two keys share a factor, then we can factor both keys!

Given keys {Nyi, N, ..., Ny}, calculate
ng(Nl, N1N2 s Nm),

ng(NQ, N1N3 s Nm),

ng(Nm, N1N2 LR Nmfl)

Batch GCD: Algorithm

Given a list {Ny, Na, ..., Ny} of RSA keys:

Batch GCD: Algorithm

Given a list {Ny, Na, ..., Ny} of RSA keys:
Calculate N = Ni{No - - - Np,.

Batch GCD: Algorithm

Given a list {Ny, Na, ..., Ny} of RSA keys:
Calculate N = Ni{No - - - Np,.
Create a list G of length m.

Batch GCD: Algorithm

Given a list {Ny, Na, ..., Ny} of RSA keys:
Calculate N = Ni{No - - - Np,.

Create a list G of length m.
Foreachi=1,2,...,m:
m Calculate R, =N mod N,-z.

Batch GCD: Algorithm

Given a list {Ny, Na, ..., Ny} of RSA keys:
Calculate N = Ni{No - - - Np,.
Create a list G of length m.
Foreachi=1,2,...,m:

m Calculate R, =N mod N,-z.
m Set G; = ng(N,', R,/N,) = ng(N,', N/N,)

Batch GCD: Algorithm

Given a list {Ny, Na, ..., Ny} of RSA keys:
Calculate N = Ni{No - - - Np,.

Create a list G of length m.
Foreachi=1,2,...,m:

m Calculate R, =N mod N,-z.

m Set G; = ged(N;, R;/N;) = ged(N;, N/N;).
Return G.

Batch GCD: Considerations

{N; | G; > 1} is the set of keys that share a factor with some other
key

G; prime = G; nontrivial factor of N;
Gi =1 or composite = find pairwise GCDs until (1)
Complexity:
O(m (In n)?)

For RSA-specific cracks, may be much more effective than any
other method listed

Used to crack thousands of RSA keys from a set of size O(10)
(2011)

Future of Factorization

Ever-growing push for better methods
Current research

