
Contents

1 Lecture 1 2
1.1 Significant Digits: . 2
1.2 O-Notation (Asymptotic Behavior) . 2

1.2.1 Big O-notation . 3
1.2.2 Error vs. Effort (complexity): . 3
1.2.3 Little o-notation . 4

2 Lecture 2 4
2.1 Complex Basics . 4

2.1.1 Identities: . 4
2.2 Convergence . 5

2.2.1 Algebraic Convergence . 5
2.2.2 Exponential/Linear Convergence 5
2.2.3 Super Exponential Convergence: 6

3 Lecture 3 6
3.1 Newton Iterations . 6
3.2 Floating Point Representation . 7

3.2.1 IEEE Double Precision . 8

4 Lecture 4 8
4.1 Rounding Error . 8
4.2 Conditioning of a problem . 10

5 Lecture 5 11
5.1 Finite-Differencing to Evaluate Derivatives 11

5.1.1 Higher Derivatives . 12
5.2 Stability . 13

6 Lecture 6 14
6.1 Stability of Linear Systems . 15

1

1 Lecture 1

1.1 Significant Digits:

Suppose a problem has a true answer y = 0.0012345..., and an algorithm returns ŷ =
0.001227..., then we have only two significant digits of accuracy.

The Relative Error is given by

ε =
|ŷ − y|
|y|

and the number of significant digits is then given by

log10

1

ε
=
∣∣∣ log10 ε

∣∣∣
However, usually we don’t know y. How do we assess ε for ŷ?

• Sometimes ∃ a specific test, e.g. solve Ax = b and check ||Ax− b||2 → ε.

• If the algorithm has an effort controller parameter, e.g. n, we can create a sequence
ŷn, for n = small,...,larger, and look for the convergence of this sequence.

Example: Suppose y = 1
12

+ 1
22

+ ... =
∑∞

k=1 k
−2, and we have that ŷn = Sn =

∑n
k=1 k

−2.
If we run basic code to calculate the sums for increasing values of n, we can see that
ε ≈ 1

n
. This is called algebraic convergence or convergence of order 1.

Figure 1.1: N-Term Error

We can determine significant digits of the out-
put from our code by examining the freezing of
digits. We will assume that as n gets larger,
our solution approaches the exact solution, and
thus increasing n returns a more accurate solu-
tion. We can then say that if the first k dig-
its of the output of n are the same as the
first k digits of the output of n + 1, then
we have k significant digits for the output of
n.

The N -term error is given by εN =
∑

k>N
1
k2

. We
can bound this error by considering its Riemann sum
and bounding it by a function as shown in Figure 1.1.
If we take the integral of this function, we have that
ε ≤

∫∞
n

1
x2
dx = 1

n
. Thus we have shown that ε ≤ 1

n
.

1.2 O-Notation (Asymptotic Behavior)

Big O-notation and little o-notation describe the limiting behavior of functions, charac-
terizing them by their growth rates.

2

1.2.1 Big O-notation

Figure 1.2:

The previous example had asymptotic behavior

of ε = O
(

1
n

)
as n → ∞. In gen-

eral, we say that f(n) = O
(
g(n)

)
if ∃ C,N

s.t. f(n)
g(n)

≤ C ∀ n ≥ N . In big O-
notation, we can get rid of the junk at the
beginning of a function, as we are only con-
cerned with the value as n → ∞ (Figure
5.1).

Example: Is n2 lnn = O(n2) as n→∞?
If we consider the ratio: n2 lnn

n2 = lnn ≤ C, be-
cause lnn is unbounded, 6 ∃ C,N s.t. this holds ∀ n ≥
N .

Example: What is the smallest O for n
n2−1?

We will simplify this problem by replacing our expression with another similar one.
However, we cannot consider n

n2 because n
n2 <

n
n2−1 , thus giving us a lower bound but not

an upper bound. Since we need an upper bound, two other options are as follows:

• Because n2 − 1 ≥ n2 − n, we have that n
n2−1 ≤

n
n2−n = 1

n−1 , thus giving us n
n2−1 =

O(1
n−1). However, we can do better than that.

• We can also see that n2 − 1 ≥ n2

2
∀ n ≥ 2, and thus n

n2−1 ≤
n

n2/2
= 2

n
. If we let

C = 2, and we then have n
n2−1 = O(1

n
).

1.2.2 Error vs. Effort (complexity):

There are two ways in which we will consider big O-notation, for a measure of error, and
for a measure of algorithmic complexity or necessary effort by the algorithm. Figure 3.2
shows an example plot for each of these purposes.

Figure 1.3: (a) ε = O(1
n
) for error ε. (b) T = O(n3) for effort or complexity over time T .

Example: Given error = ε = O(1
n
) and effort = T = O(n3), we can then compare ε and

T .

3

1.2.3 Little o-notation

Little o-notation is a stronger statement that big O-notation. We say that f(n) = o
(
g(n)

)
if limn→∞

∣∣∣∣f(n)g(n)

∣∣∣∣ = 0.

Example: Is e−n = o(1
n
)?

If we consider the limit definition, we have

lim
n→∞

∣∣∣∣e−nn−1

∣∣∣∣ = lim
n→∞

n

en
.

Using L’Hopital’s rule gives us

lim
n→∞

n

en
= lim

n→∞

1

en

= 0.

Note we can do the same thing asking if e−n = o(n−2). Using L’Hopital’s rule twice gives
us

lim
n→∞

∣∣∣∣ e−nn−k

∣∣∣∣ = lim
n→∞

nk

en
= ... = lim

n→∞

k!

en
= 0.

Using induction to show that e−n = o(n−k) for any k gives us the following:

Lemma: e−n, or rn for any |r| < 1, vanishes faster than any algebraic order. If
ε = O(e−cn) for c > 0 or ε = O(rn) for |r| < 1, we call it exponential convergence
or linear convergence.

2 Lecture 2

2.1 Complex Basics

If we consider a point in the complex plane, e.g. z = 2 + 3i. We then have that the
magnitude r = |2 + 3i| =

√
22 + 32 and the phase θ = arctan(3

2
). Note, θ can be found

in Matlab using the command angle(2 + 3i). It is also helpful to use 1i for an imaginary
number in Matlab, because i is often a variable.

2.1.1 Identities:

• eiθ = cos(θ) + i sin(θ)

• log n < nk < en ∀ k > 0 as n→∞

• a5 + a6 + ... = a5(1 + a+ ...)

4

2.2 Convergence

2.2.1 Algebraic Convergence

2.2.2 Exponential/Linear Convergence

This is the name of convergence for an error

εn :=
|ŷ − y|
|y|

= O(rn)

for some convergence rate r ∈ {0, 1}.

Examples:

• Consider a Taylor Series centered at x = 0,

− ln(1− x) = x+
x2

2
+
x3

3
+ ...

Let us consider the tail of the series, where the nth-term error is given by εn =∑
k>n

1
k
xk. We can compare this to the geometric series of∑

k>n

xk = xn+1

∞∑
k=0

|x|k

≥ εn.

We also know that
∑∞

k=0 |x|k = 1
1−|x| . Thus we have that ε = O(|x|n+1) = O(|x|n)

because the constant gets absorbed into the C. It is important to note that there
is exponential convergence only for |x| < 1. In this case, r = |x|.

Suppose we need n = 100 to get ε = 10−8, what n will give us ε = 10−16? If
rn ≈ 10−8, then r2n = 10−8∗2 = 10−16. Thus we need n = 200.

• Consider f(x) = 1
1+x2

. Note that f is smooth, which means that f ∈ C∞, or
f is continuous and infinitely complex differentiable. To write this function as a
geometric series, let us rewrite f as

f(x) =
1

1 + x2
=

1

1− (−x2)
=

k∑
i=1

(−x2)k

Just as before, we can see that this series converges for |x| < 1, and diverges oth-
erwise.

We know that the size of the tail of this function must be less than the sum,
i.e. for some N , |tail| <

∑
k>N |x2k| = O(|x|2n).

However, this O(|x|2n) is misleading, as we are dealing with a special taylor se-
ries without odd points, i.e. 1− x2 + x4− If we include odd terms for a generic,
non-zero x0, then r = |x|, the same as we had in the first example for − ln(1− x).
Convergence is as if ∃ a singularity of distance 1 from our expansion center, x0 = 0,
i.e. f →∞ as (1 + x2)→ 0. Thus x2 = −1, and this singularity is at x = ±i.

5

Theorem: Asymptotically, the rate of convergence in a series is given by the ratio of the
distance from the center to the evaluation point to the distance from the center to the
nearest singularity. I.e. suppose we center our series at a, evaluate it at x, and ds is the
distance to the closest singularity, then for large n

r =
∣∣∣ x− a
ds − a

∣∣∣
Corollary: A Taylor series converges exponentially fast for points x closer to the
expansion point x0, than the distance from x0 to the closest singularity in C, i.e.
|r| < 1.

Theorem: Let f be analytic in some disc |x−x0| ≤ R, where the distance to the nearest

singularity is > R. Then the error in the n-term Taylor series at x is ε = O
(∣∣∣x−x0R

∣∣∣n).

2.2.3 Super Exponential Convergence:

Figure 2.1: N-Term Error

Consider the Taylor series for ex about x = 0,

ex = 1 + x+
x2

2!
+
x3

3!
+ . . . ,

with error rate ε =
∑

k>n
xk

k!
. Here we prove that this

series is super-exponentially convergent, i.e. for each
rate r > 0, no matter how small, ε, the error in trun-
cating to n terms, is O(rn). This implies that on a
semi-log-y plot (log ε vs n), the graph has increasingly
negative slope, that can become arbitrarily steep.

Proof. Given location x, and rate r > 0, then choose
integer N > |x|/r. Then, for k ≥ N , a single term has
the bound

|xk|
k!
≤ NN

N !
· |x|

k

Nk
≤ Crk

(Why? Make sure you understand this. C can be large but is always constant with respect
to k.) So the tail is bounded as usual by ε ≤ C

∑
k>n r

k = O(rn) for all n ≥ N .

Note that this arbitrarily high rate of exponential convergence corresponds to ex being
analytic in arbitrarily large discs around the origin. This is called an entire function.

3 Lecture 3

3.1 Newton Iterations

Example: Computing x =
√
y, for y ≥ 0. Guess some x0 > 0, and iterate

xn+1 =
xn + y

xn

2

for n = 0, 1, If we test, we can see that this algorithm doubles the number of correct
digits each iteration, which we call quadratically convergent. This algorithm is actually a
dynamical system, which converges to a fixed point at

√
x, and also a case of a Newton It-

eration.

6

Figure 3.1: N-Term Error

Def: More rigorously, Newton’s iterations are a
numerical technique to find roots of a function, f ,
through iterations

xn+1 = xn −
f(xn)

f ′(xn)
,

and quadratic convergence is error s.t.
εn+1

e2n
≤ C for some C

Taylor’s Theorem: Given an expansion point a and evaluation point x for some function
f , we have

f(x) = f(a) + f ′(a)(x− a) + ...+
f (n)(a)

n!
(x− a)n +R

where the R = f (n+1)(â)
(n+1)!

(x− a)n+1 is the remainder term, and â ∈ (a, x).

Theorem: Let f ∈ C2 and f ′(z) 6= 0. If x0 is sufficiently close to z, then

lim
n→∞

|xn+1 − z|
(xn − z)2

= C

This is equivalent to saying f is quadratically convergent. This does not just give a
bound on the error, it gives a rate of decay. Note, this is a root finding theorem, not a
continuation of Taylor’s Theorem.

• For each C ′ > C, ∃ an interval I symmetric about z where
∣∣∣ f ′′(z)2f ′(z)

∣∣∣ < C ′. If xn ∈ I
then |xn − z| < 1

C′
, and from Taylor’s Theorem we have the inequality

|xn+1 − z| < C ′(xn − z)2 < C ′
1

C ′
|xn − z|

|xn+1 − z| < C ′(xn − z)2 < |xn − z|
This is equivalent to saying that the iteration gets closer to the root each time if
xn ∈ I.

3.2 Floating Point Representation

This is a fancy way of saying the computer only works to finite precision, e.g. compute
(1 + 10−17) − 1 = ? Mathematically this should give us 10−17, but it will likely give
us zero. However, suppose we try (10−6 + 10−17) − 10−6 = ? This will actually give us
(approximately) the correct answer, 10−17. This is due to rounding error, where (Matlab)
will store only 16 digits of relative accuracy, and thus relative changes of less than 10−16

are not recorded.

Example: Consider
∑∞

k=1
1
k2

= ζ(2). Starting at k = 108, each additional term will
have no effect on the computational sum because if k ≥ 108, 1

k2
≤ 10−16. Thus all terms

for 108 ≤ k < ∞ are not included in a computational sum. To solve this problem, we
will reverse the order of the sums. If we start our sum at zero, values of 1

k2
≤ 10−16 are

still computationally relevant. Thus we will sum from the smallest values to the largest.
Note, we must choose some number N to be the upper bound,

∑1
k=N

1
k2

.

7

3.2.1 IEEE Double Precision

Let x ∈ R be represented by some finite number of bits. x is a finite subset of R, and
must have a highest and lowest possible value, the standard of which is ±10308. The
standard method of representing numbers in computing is IEEE Double Precision. For
a base β and precision t, we have a set of floating point numbers :

F = {±m
βt
βe, 0,±∞,NAN}

The standard base is β = 2 and t = 53, where e ∈ {−1022,−1021, ..., 1023}. The
mantissa m represents the precision bits of the number

• The last two numbers in the set ±∞,NAN are considered special types of numbers,
and do not behave as other numbers.

• Given 64 bits, we use 52 bits for the mantissa m, 11 bits for the exponent e, and
one bit for the sign. Note, 64 bits = 8 bytes.

• double precision [1, 2] is represented by {1, 1 + 2−52, 1 + 2 · 2−52, ..., 1 + 252 · 2−52 =
2}. There are gaps in here! The biggest relative gap is the first one, where the
boundaries are smallest, with a relative gap between (1, 1+2−52) given by 2.2·10−16.
(Note, reference 16 bit).

• The interval [2, 4] is represented by twice the size of intervals as used for [1, 2]. The
interval [−2,−1] is represented by negative versions.

• The relative error is the same, at the beginning of each interval.

Figure 3.2:

eps = 2.2 · 10−16.
εmach = eps

2
= 1

2
β1−t = largest allowed rounding error. I.e. any number you give a

computer will be rounded to the closest number in its set, and εmach is the maximum
relative rounding error. ∀ x ∈ R, ∃ x′ ∈ Fs.t.x′−x|x| ≤ εmach.

εmach is machine precision. GAP after 1 is eps = 2εmach.

4 Lecture 4

4.1 Rounding Error

A flop is a floating point operation. We have the following important rules of floating
point, where fl(x) is the floating point representation of x:

8

• any input is rounded to the nearest member of F.

– fl(x) = (1 + ε)x for some |ε| ≤ εmach.

– Worst case scenario is error of eps/2. This is why machine precision εmach =
eps/2 = 1.1 · 10−16.

• Each arithmetic operation (’flop’) done by the machine is done at worst εmach rel-
ative error. I.e. let x, y ∈ F , then x + +y = (1 + ε)(x + y) for some |ε| ≤ εmach,
where ++ is done by the machine. Same for ×, /, and some built in functions.

Often the cumulative error is small, but not always. A good algorithm should
have it as small as reasonable.

Example: Subtraction. Let x = 1 + 10−10, y = 1. Then

fl(x) = (1 + ε1)(1 + 10−10)

fl(y) = (1 + ε2)1

Note, we know that ε2 = 0, but this is not always the case. Then

fl(x)− fl(y) = (1 + ε1)x− (1 + ε2)1

= x− 1 + ε1x− ε2

The answer we are looking for is given by x− 1, and we have cumulative error ε1x− ε2,
where |ε1|, |ε2| ≤ εmach. The worst case scenario is εtot = (x + 1)εmach if ε1 = εmach and
ε2 = −εmach. This error is approximately equal to 2εmach = eps, with relative error given
by

2εmach
10−10

= 2 · 1010 · εmach

≈ 2 · 10−6

However, we have still only dealt with initial rounding errors. Now we must consider flop
error, where (fl(x) − fl(y))(1 − ε3). (1 + ε3) gives a maximum relative error of 10−16,
which is negligible because it will be dominated by the potential rounding error of 10−6.
This error is called catastrophic cancellation

Example: Evaluate y = 1−cos(x)
x2

at x ≈ 0 (preferably to high relative precision). The
answer to cos(x) is only accurate to εmach relative error. Thus the numerator can be
given by 1 − cos(x) + ε1, |ε1 ≤ |εmach. Introducing rounding error and calculation error
in the denominator, gives us

ŷ =
1− cos(x) + ε1(
x(1 + ε2)

)2
(1 + ε3)

=
1− cos(x) + ε1

x2
(1 + 3ε)

where 3ε is a sum of ε2, ε3. Let us note that 1
1+ε1
≈ 1 + ε1. We then have that

abs error =
ε1
x2

+ .5(3ε)

9

.5(3ε) is very small. But ε1
x2

can become very bad, e.g. x = 10−6 gives an absolute error
of εmach

(10−6)2
≈ 10−4, especially if the sign of the answer is ≈ .5.

How can we fix this? Do not evaluate the cosine and subtract 1. Instead, note

that 1− cos(x) = 2 sin2(x
2
), and thus y =

2 sin2(x
2
)

x2
. Thus produces a much more accurate

result, one of relative error of machine precision, O(εmach), because sin(x) is computed to
high relative error. When we evaluated cos(x), we subtracted the majority of it leading
to a high error.

Example: Let us consider finding the roots of ax2 + bx + c = 0. if ac << b2, the
discriminant is dominated by b2, and will look like b+ something very small relative to b.
There are two roots,

x+ =
1

2a
(−b+ (b+ small))

x− =
1

2a
(−b− b− small)

For x+, the large part of the root b is subtracted off, leaving a small level of accuracy in
the small part. For x−, this is not a problem, because the small part is still arbitrarily
small with respect to the root.

How can we fix this? Rewrite our quadratic formula as

x2 +
b

a
x+

c

a
= (x+ x−)(x+ x+) = 0

thus telling us that we can compute x− accurately, and then compute x+ = c
ax−

.

4.2 Conditioning of a problem

Is it reasonable to demand sin(1016) to high accuracy? If x = 1016, then fl(x) = (1+ε)x,
where |ε| ≤ 1. This is HUGE error in rounding! Evaluating sin(fl(x)) could thus be very
inaccurate. This problem is called ill-conditioned.

Given a math problem, e.g. evaluate y = f(x), how sensitive is the output to changes in
input? We say that f is well-conditioned if small changes δx in the input x cause ’small’
changes in output, δf := f(x+ δx)− f(x). The absolute condition number is given by

κ̃(x) =
|δf |
|δx|

, δx << 1

The relative condition number is essentially the ratio of relative jiggle on input to relative
jiggle on output. Under the assumption that δf

δx
≈ f ′(x), the relative condition number

is given by

κ(x) =
|δf |/|f |
|δx|/|x|

, δx << 1

=
∣∣∣xf ′(x)

f(x)

∣∣∣
10

A small value of κ implies that the problem is well-conditioned, whereas a large κ implies
an ill-conditioned problem.

Examples:

• Is f(x) = 2x, f ′(x) = 2 well conditioned?

κ =
∣∣∣2x2x∣∣∣ = 1. It is well conditioned for all x.

• Is f(x) = ex, f ′(x) = ex well conditioned?

κ =
∣∣∣xexex ∣∣∣ = |x|. This is well-conditioned for small x.

• When is f(x) = sin(x) ill-conditioned?

κ =
∣∣∣x cos(x)sin(x)

∣∣∣ =
∣∣∣ x
tan(x)

∣∣∣. This is ill-conditioned at x = nπ ∀ n and for most large x,

except when tan(x) ≈ ∞.

5 Lecture 5

5.1 Finite-Differencing to Evaluate Derivatives

Goal is to approximate f ′(x) at a certain point if all you have access to is the evaluations
of f(x).

Example: f ′(x) ≈ f(x+h)−f(x−h)
2h

for small h. What is the error vs. h? Use Taylor’s
Theorem about x.

d =
1

2h

(
f(x) + hf ′(x) +

h2

2
f ′′(x) +

h3

3!
f ′′′(q)

)
...

− 1

2h

(
f(x)− hf ′(x) +

h2

2
f ′′(x)− h3

3!
f ′′′(q′)

)
=

1

2h

(
2hf ′(x) +

h3

3!
(f ′′′(q) + f ′′′(q′))

)
As h→ 0,

(
f ′′′(q) + f ′′′(q′)

)
→ 2f ′′′(x), which is just a constant, C. Thus we have

= f ′(x) + Ch2

where Ch2 is the error, and so error = O(h2). This is called second order convergence
as h→ 0. This is the centered difference algorithm. A similar algorithm is the one-sided
difference algorithm, which is first order convergence, O(h). The one-sided is given by

f ′(x) ≈ f(x+h)−f(x)
h

.

11

5.1.1 Higher Derivatives

Example: Suppose we want to evaluate a second derivative at x.

f ′′(x) =
f ′(x+ h/2)− f ′(x− h/2)

h

=

1
h

(
f(x+ h)− f(x)

)
− 1

h

(
f(x)− f(x− h)

)
h

=
f(x+ h)− 2f(x) + f(x+ h)

h2

This can be shown to be O(h2) by Taylor expansion. This is a basic example of finite
difference methods used to solve ODEs/PDEs. Generally smaller h is better, but
we must be wary of rounding error and catastrophic cancellation. Thus it is
not necessarily true that Error→ 0 as h→ 0.

Example: Suppose we use the centered difference formula and the machine gives us
f(x)(1 + ε) for some |ε| ≤ εmach. Note, this is the best accuracy that we could hope for if
we ignore rounding error due to machine subtraction and division by 2h as well as fl(x).
It is essentially a simplified error model.

f(x+ h)(1 + ε1)− f(x− h)(1 + ε2)

2h
=
f(x+ h)− f(x− h)

2h
+
f(x+ h)ε1 − f(x− h)ε2

2h

Can we bound the error term? Want a simpler expression that is not in terms of ε1, ε2.
To assume the worst possible case, we take the largest of the two function values f(x +
h), f(x − h) and take the maximum of ε1, ε2 given by εmach. Thus,

Figure 5.1:

Error ≤ maxx∈{x−h,x+h}|f(x)| · 2εmach
2h

= C
εmach
h

= O
(εmach

h

)
Thus we must add the theoretical and
numerical error,

Error = O(h2) +O
(εmach

h

)
What is the optimal h? The opti-

mal h is one third between back from
0 towards εmach in logarithmic land.
The minimum is roughly where the
two types of error balance each other,
i.e. are equal,

h2 =
εmach
h

h = 3
√
εmach

12

5.2 Stability

Stability is a property of an algo-
rithm, answering the question:

Does it solve a prob-
lem as accurately as
one would expect?

Def: An algorithm f̂(x) for f(x) is backwards stable if ∀ inputs x

f̂(x) = f
(
x(1 + ε)

)
for some |ε| ≤ Cεmach, C < 10−3

In words, we can loosely describe this as an algorithm that gives ”exactly the right answer
to nearly the right question.” The strategy for proving backwards stability is to expand
f̂(x)

Examples: Let us consider backwards stability analyses.

• f(x) =
√

2x.

f̂(x) = fl(
√

2)× fl(x)

=
√

2(1 + ε1) · x(1 + ε2)(1 + ε3)

=
√

2x(1 + ε1)(1 + ε2)(1 + ε3)

= 1 + (ε1 + ε2 + ε3) + (ε1ε2 + ...+ ε1ε2ε3)

≤ 1 + 3εmach

Yes it is backwards stable with |ε| ≤ 3εmach. Note in the last step, we discarded the
second portion of error expansion as it was O(ε2mach), which was arbitrary compared
to 3εmach. The (1 + ε3) came from the multiplication operation.

• f(x1, x2) = x1 + x2. This is addition with two inputs.

f̂(x1, x2) = fl(x1) + fl(x2)

=
(

(1 + ε1)x1 + (1 + ε2)x2

)
(1 + ε3)

= (1 + ε1)(1 + ε3)x1 + (1 + ε2)(1 + ε3)x2

= (1 + ε4)x1 + (1 + ε5)x2, where |ε4|, |ε5| ≤ 2εmach

try to write in form f(x1(1+ε1), x2(1+ε2)) to match definition of backwards stable.

• Is our algorithm
∑∞

k=0
1
k4

backwards stable? Trick question! There is no x input,
and to consider backwards stability we must have some function f(x).

There do exist algorithms which are not backwards-stable. A classic example is finding
the eigenvalues of a matrix. You write out the characteristic equation and find the roots,
which are the eigenvalues. This in fact is a bad algorithm, and not backwards stable. By
evaluating characteristic polynomial coefficients, you lose a lot of accuracy.

13

6 Lecture 6

Let f̃(x) be a backwards stable algorithm for a problem f(x). How accurate is it?

Theorem: If an algorithm f̃(x) is backwards stable, then the relative error (also called
forward error) is given by ∣∣∣ f̃(x)− f(x)

f(x)

∣∣∣ = κ(x)O(εmach)

This is bounding our relative error by Error ≤ Cκ(x)εmach, where C is some constant
that we hope is small.

Proof. Let x̃ = (1 + ε)x, where ε = O(εmach), be tweaked s.t. f̃(x) = f(x̃). Then

|δx| = |x̃− x| = |εx| ≤ |x|O(εmach). Now recall the definition of κ(x) = |δf/f|
|δx/x| . Combining

these definitions gives us
∣∣∣ δff ∣∣∣ = κ(x)

∣∣∣ δxx ∣∣∣ = κ(x)O(εmach).

Examples:

• Consider some function f , where κ = 103 with a backwards stable algorithm. Then
we are guaranteed ≈ 103 · 10−16 = 10−13 accuracy. I.e. we have lost approximately
log10 κ(x) digits of accuracy.

• Let f(x) = sin(1010), where κ(x) = |x cot(x)| ≈ 2 · 1010 at x = 1010. Thus we can
predict a relative error of ≈ 2 ·1010 ·10−16 = 2 ·10−6. Calculating our error explicitly
using the backwards stable definition, we get

ˆsin(1010) = sin
(

1010(1 + ε)
)

= sin(1010 + 1010ε)

= sin(1010 + 10−6)

= sin(1010) cos(10−6) + cos(1010) sin(10−6)

We can then calculate the relative error as

Error =
∣∣∣sin(1010) cos(10−6) + cos(1010) sin(10−6)− sin(1010)

sin(1010)

∣∣∣
=
∣∣∣ cos(10−6) +

cos(1010)

sin(1010)
sin(10−6)− 1

∣∣∣
=
∣∣∣ cos(10−6) + cot(1010) sin(10−6)− 1

∣∣∣
= 1.790992975481132e− 06

This confirms our initial prediction of 2 · 10−6 bounding the error.

Def: An algorithm is stable if∣∣∣ f̃(x)− f(x̃)

f(x̃)

∣∣∣ = O(εmach),

14

for some x̃ = x(1 + ε), ε = O(εmach). In words, we can say that the algorithm gives
nearly the right answer to nearly the right question. Note, this is a weaker notion than
backwards stability

- Addition, subtraction, multiplication and division are all backwards stable.
- sin, cos, and most functions are only stable.
- Some functions are unstable, e.g.

√
1 + x2 − 1 for x close to 0.

6.1 Stability of Linear Systems

Def: The 2-norm of a vector is its size ||x|| =
√
x21 + ...+ x2n =

√
~x · ~x. The error in a

vector result is the size of the error vector, ||x̂−x||. The error of a matrix ||A|| is defined
as the largest factor by which the matrix can grow a vector’s length by, called the induced
error, where

‖A‖ = max
~x∈Rn,~x6=~0

‖Ax‖
‖x‖

We must generalize the condition number of a matrix-vector multiplication, ~f(~x) =

A~x. First let us note that given a square matrix, M = N , then ‖~x‖
‖A~x‖ ≤ ‖A

−1‖.

Proof.

‖~x‖ = ‖A−1A~x‖ ≤ ‖A−1‖ · ‖A~x‖

Thus let

κ(A) = max
δ~x∈Rn,δ~x 6=~0

‖δ ~f‖/‖~f‖
‖δ~x‖/‖~x‖

= max
‖δ ~f‖
‖δ~x‖

· ‖~x‖
‖~f‖

= max
‖A ~δx‖
‖δ~x‖

· ‖~x‖
‖A~x‖

≤ max ‖A‖‖A
−1‖‖A~x‖
‖A~x‖

= ‖A‖ · ‖A−1‖

Figure 6.1:

The matrix condition number
is giving us the worst case rela-
tive sensitivity over all tweak di-
rections in 2-norms. Figure 6.1
shows a matrix A mapping the
unit circle from Rm → Rn.
The 2-norm of A is the point
mapped furthest, shown on the right
plot.

15

Given a matrix A, MATLAB’s
cond(A) computes the condition
number. Also note that libraries (in Matlab, Sage, etc.) for linear algebra are all back-
wards stable. Thus the digits lost in x̂ ≈ log10 κ(A), and the relative error is given by∣∣∣ x̂−~x~x ∣∣∣ = κ(A)O(εmach).

Def: The residual is ~r = A~x−~b. Note, ‖~r‖ is always small.

16

