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These are notes and those of math475A are used in the upper level

undergraduate courses on numerical analysis. Since the students taking this
course sequence come from diverse backgrounds and most of them do not
know any analysis, we have focused on scientific computing, rather than

numerical analysis.

The notes are being extensively revised. The major revisions are: (1)
substantial correction of errors. (2) Incorporation of many more examples
(and removal of examples that, although attributed to the original author,

are not original). (3) Restructuring of the course material. (4) Making
greater use of hyperlinks in order to reduce the complexity of the notes

while at the same time making the cross references a useful feature of the
text. (5) Changing the notes to PDF format. These notes were never

intended to be public, but the wonders of the web have made this academic
now. This is a work in progress, and as such, it is bound to have many
errors, primarily of typographic nature. We would be delighted to hear

from you, if these notes have been of any use to you. We are particularly
interested in receiving corrections and suggestions.

At some point in time the use of matlab in numerical analysis classes was
quite rare. Then, making a statement like we only use matlab in this

numerical analysis sequence, was considered bold...fortunately, no longer.
We prevailed and now the reasons are perfectly obvious. If you happen not
to use or know how to use matlab, don’t fret: just go to the home page and
download the matlab primer. Just read carefully the first 20 pages. Then,
do homework 1 of 475A. This will teach you enough of the essentials of

matlab to get going.

Please note that the algorithms given in these notes are not matlab

compatible with regard to indices. Be careful, if you are new to matlab, to

adjust the algorithms for indices that include non-positive values.

The sequence followed in these notes results from two things: The
assumption that matlab might be new to the student. Since we go from
scalar, to vector, to matrix problems, the student will have time to learn

enough matlab so that by the time matrix problems come around, they will
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be proficient. The more important reason, however, is that it is important
to emphasize the notion of norm and of error. I found it better to work up

in complexity, from scalar, to vector, to matrix norms.

The original set of notes was used in teaching the year sequence in
numerical analysis at the senior undergraduate level. The notes became
useful to our applied math graduate students, taking their first year of
numerical analysis. I had help in writing/editing of these notes by Prof.
Rob Indik, Ms. Emily Lane, and Ms. Rachel Labes; their input and their

hard work has yielded a better set of notes. Whatever errors are still in the
notes are all my own ....Juan Restrepo
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Part I

ORDINARY DIFFERENTIAL
EQUATIONS
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0.1 The INITIAL VALUE PROBLEM (IVP)

ORDINARY DIFFERENTIAL EQUATIONS (ODE) Material for
this section is taken from books by Kincaid & Cheney, Burden & Faires,
Atkinson, Iserles, Isaacson & Keller, Coddington & Levinson, Stoer & Burlisch.
The references to numerical analysis books can be found by clicking here.

The first part will consider the “initial value problem.” (IVP) in detail.
The second part will present the “boundary value problem” (BVP) in a
cursory way (see notes for 575B course, where we use variational methods to
recast the BVP for its numerical solution, a powerful and elegant analytical
technique that leads to a host of important numerical schemes).

An ordinary differential equation is a function that maps x 7→ y(x) ∈ Rn,
n a natural number, and it involves x the independent variable, y(x), and
finite set of derivatives of y(x). It has the form

g

(
x, y, y′, y′′, . . . ,

dmy

dxm

)
= 0.(1)

where g ∈ Rk, k a natural number. In many instances k = 1. In fact, assume

for now assume that k = 1 in what follows. Equation (1) is an mth order

ODE, since the highest non-zero derivative in y is
dmy

dxm
.

We can recast (1) in “normal form.” Solving for dmy
dxm

we have
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dmy

dxm
= f

(
x, y, y′, . . . ,

dm−1y

dxm−1

)
.

Let y(j) =
djy

dxj
with j = 0, 1, 2, . . . m with y(0) ≡ y.

Then (1) is equivalent to
d

dx




y(0)

y(1)

:
y(m−1)


 =




y(1)

y(2)

:
f(x, y(0), y(1) · · · y(m−1))


 ,

or
dY

dx
= F (x, Y )

with Y = (y(0), · · · , y(m−1))T

and F ≡ (f (0), f (1), . . . , f (m−1))T ,

where the superscript T stands for transpose.

Definition: Autonomous and Non-autonomous ODE’S:

dY

dx
= F (Y ) is autonomous since x does not

appear explicitly.

dY

dx
= F (Y, x) is non-autonomous.

(2)

Non-autonomous ODE’s can be recast as an ODE by the following procedure:

let Y =
(
y(0), · · · , y(m)

)T
. It’s an m+ 1 dimensional vector

F =




y(1)

y(2)

:
f(y(0), · · · , y(m))

1



, is an m+ 1 dimensional vector,
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where

y(m) = x

dy(m)

dx
= 1 becomes the last equation of (2)

The Initial Value Problem is defined as:





dY

dx
= F (Y, x)

Y (x0) = Y0 Y0 is an m dimensional vector.

Example) We recast the following initial value problem as a normalized au-
tonomous system.

sin ty′′′ + cos(ty) + sin(t2 + y′′) + (y′)3 = log t

y(2) = 7

y′(2) = 3

y′′(2) = −4

Let y(0) = y, y(1) =
dy(0)

dt
, y(2) =

dy(1)

dt
.
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Normalizing:

y′′′ = − 1

sin t

(
cos(ty) + sin(t2 + y(2)) + (y(1))3

)
+

log t

sin t



d

dt
y(2) = − 1

sin t
(cos(ty(0)) + sin(t2 + y(2)) + (y(1))3 +

log t

sin t
d

dt
y(1) = y(2)

d

dt
y(0) = y(1)

Let Y = (y(2), y(1), y(0))T

then
dY

dt
= F (t, Y ) ≡ (f (2), f (1), f (0))T

with F =





− 1

sin t
(cos(ty(0)) + sin(t2 + y(2)) + (y(1)3) +

log t

sin t
y(2)

y(1)

Y (2) = (−4, 3, 7)T

Made autonomous:
dY

dx
= f(Y ) = (f (3), f (2), f (1), f (0))

where f (3) = 1

and Y = (y(3), y(2), y(1), y(0)), y(3) = t Y (2) = (2,−4, 3, 7)

2

0.1.1 Some important theorems on ODE’s

see Braun, for an introductory exposition, and Coddington & Levinson and
Birkhoff & Rota for a more advanced one

Definition:

A function f(x, y) satisfies a “Lipschitz Condition” in the variable y on a set
S ∈ R2 provided ∃ constant L such that

|f(x, y1)− f(x, y2)| ≤ L|y1 − y2|

whenever (x, y1), (x, y2) ∈ S. L is the Lipschitz constant.
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(x1,y1)

(x2,y2)

CONVEX

NON-CONVEX

(x1,y1)

(x2,y2)

Figure 1: CONVEX AND NON-CONVEX EXAMPLES

Definition: A set S ∈ R2 is convex, if whenever (x1, y1) & (x2, y2) belong to
S, the point [(1 − λ)x1 + λx2, (1 − λ)y1 + λy2] also belongs to S for each λ
when 0 ≤ λ ≤ 1. See Figure 1.

We study the IVP
{
y′ = f(x, y)
y(x0) = y0

a system of n ODE’s(3)

Take S ≡ {(x, y)|a ≤ x ≤ b, y ∈ Rn}
with a, b, finite, a ≤ x0,≤ b.

It has exactly 1 solution provided f satisfies the following conditions of exis-
tence and uniqueness.

Existence & Uniqueness

Theorem. f defined and continuous on S, convex (see 0.1.1), and satisfies a
Lipschitz condition 0.1.1⇒ for every x0 ∈ [a, b] & every y0 ∈ Rn there exists
1 function y(x) such that

a) y is continuous and differentiable for x ∈ [a, b]
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b) y′(x) = f(x, y(x)) for x ∈ [a, b]

c) y(x0) = y0

2

Theorem. Suppose f defined and convex. If there exist a constant L > 0
such that

∣∣∣∣
dfi
dyj

∣∣∣∣ ≤ L ∀(x, y) ∈ S

⇒ f satisfies a Lipschitz condition on S

2

Remark. In applications one finds that f is usually continuous in S and also

continuously differentiable there, but could have the derivates
dfi
dyj

unbounded

on S.
⇒ While (3) is still solvable the solution may only be defined in some U(x0)
neighborhood of the initial x0 ∈ [a, b].

Example)

{
y′ = y2

y(0) = 1

has solution y =
1

1− x defined only for x < 1.

Continuous Dependence:

Theorem. Let f : S → Rn continuous on S also satisfying the Lipschitz
condition 0.1.1

||f(x, y1)− f(x, y2)|| ≤ L||y1 − y2||

∀(x, y) ∈ S, i = 1, 2. Let a ≤ x0 ≤ b. For the solution y(x; s) of the initial
value problem
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x

y

s1

s2

x0

Figure 2: Trajectories y1 and y2 emanating from initial data s1 and s2, re-
spectively

{
y′ = f(x, y)
y(x0; s) = s

there holds the estimate

||y(x; s1)− y(x; s2)|| ≤ eL|x−x0|||s1 − s2||
for a ≤ x ≤ b.

Proof. See Figure 0.1.1

y(x; s) = s+
∫ x
x0
f(t, y(t, s))dt, then

y(x; s1)− y(xi; s2) = s1 − s2 +
∫ x
x0

[f(t, y(t, s1))− f(t, y(t1, s2))]dt

thus

||y(x; s1)− y(x; s2)|| ≤ ||s1 − s2||+ L|
∫ x

x0

||y(t; s1)− y(t; s2)||dt|
︸ ︷︷ ︸

Φ(x)

(4)
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then Φ′(x) = ||y(t, s1)− y(t, s2)||. Thus by (4), for x ≥ x0

α(x) ≤ ||s1 − s2|| with α ≡ Φ′(x)− LΦ(x)

Take the initial value problem
{

Φ′(x) = α(x) + LΦ(x)
Φ(x0) = 0

for x ≥ x0 ⇒ Φ(x) = eL(x−x0)
∫ x
x0
α(t)e−L(t−x0)dt.

Since α ≤ ||s1 − s2||, then

0 ≤ ||Φ|| ≤ eL(x−x0)||s1 − s2||
∫ x

x0

e−L(t−x0)dt

=
1

L
||s1 − s2||[eL(x−x0) − 1] x ≥ x0

Since α = Φ′ − LΦ ⇒ ||y(x, s1) − y(x, s2)|| = Φ′(x) = α(x) + LΦ(x) ≤
||s1 − s2||eL|x−x0| 2

The above theorem can be sharpened: under extra continuity, the solution
of the IVP actually depends on initial value in a continuously differentiable
manner:

Theorem. If, in addition to assumptions in previous theorem and if the
Jacobian Dyf(x, y) ≡ [∂fi/∂yj] exists on S, and is continuous and bounded,

||Dyf(x, y)|| ≤ L for(x, y) ∈ S,
⇒ the solution y(x, s) of y′ = f(x, y), y(x0, s) = s is continuously differen-
tiable for all x ∈ [x0, b] and all s ∈ Rn

2

Example)

y′ = 1 + sin(xy) = f(x, y)

S = {(x, y)|0 ≤ x ≤ 1,−∞ < y <∞}
∂f

∂y
= x cos(xy)⇒ L = 1
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∴ for any (x0, y0) with 0 < x0 < 1∃ a Y (x) and associated IVP on some
interval [x0 − α, x0 + α] ∈ [0, 1].

Example) y′ =
2x

a2
y2 y(0) = 1 a > 0 const.

Y (x) =
a2

a2 − x2
− a < x < a. Solution depends on size of a.

To determine L take ∂f
∂y

(x, y) = 4xy
a2 ∴ to have L finite on S, S must be

bounded in x and y, say −c ≤ x ≤ c,−b ≤ y ≤ b.

Theorem. (Existence)

For

{
y′ = f(x, y)
y(x0) = y0

(5)

if f is continuous in a rectangle S with center at (x0, y0), say,

S = {(x, y) : |x− x0| ≤ α, |y − y0| ≤ β}
then the initial value problem (5) has a solution y(x) for |x−x0| ≤ min(α, β/M),
where M is the maximum of |f(x, y)| in S.

Example)

y′ = (x+ sin y)2

y(0) = 3

has a solution on − 1 ≤ x ≤ 1

f(x) = (x+ sin y)2 and (x0, y0) = (0, 3)

S = {(x, y) : |x| ≤ α, |y − 3| ≤ β}
If (x, y)| ≤ (α+1)2 ≡M . Want min(α, β/M) ≥ 1 so set α = 1. Then M = 4
and everything is consistent if β ≥ 4. So theorem asserts that a solution
exists on |x| ≤ min(α, β/M) = 1.

2

A useful theorem: Consider{
Y ′ = T (x)Y
Y (a) = I

(6)
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where T (x) is an n× n matrix

Theorem. If T (x) is continuous on [a, b] and k(x) ≡ ||T (x)|| ⇒ solution
Y (x) of (6) satisfies

||Y (x)− I|| ≤ e
R x
a k(t)dt − 1 x ≥ a

Proof: exercise. 2

0.1.2 Numerical Methods for the approximate solution
of ODE’S.

We concentrate first on the IVP and then discuss the BVP. We only consider
finite difference methods (F.D.). F.D. methods invariably require that the
independent variable x be a discrete sequence and that Y (x), derivatives of
Y (x), and coefficients in the equation that depend on x be approximated on
such a grid.

Notation let Y (x) be the true solution of

{
Y ′ = f(x, Y )
Y (a) = Y0.

(7)

let y(x) represent the approximate solution and by way of notation, let

y(x0) ≡ y0, y(x1) ≡ y1, . . . y(xn) ≡ yn.(8)

let yh denote an approximation at some resolution, given by h the grid spac-
ing. If the grid is equally spaced

xn = x0 + nh, n = 0, 1, 2 · · ·(9)

Take x0 = a, for simplicity, and let N(h) denote the largest index N for
which

xN ≤ b xN+1 > b

where a < b. The simplest finite difference approximation would be
{
y(xn+1) = yn + hnf(xn, yn)
y0
∼= Y0,

where hn = xn+1 − xn, and n = 0, 1 . . ..
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Using an equally spaced grid the above scheme would be Euler(Forward Euler)

Perhaps the simplest most straightforward scheme. It reads

yn+1 = yn + hf(xn, yn) n = 0, 1, . . .(10)

y0
∼= Y0

where yn is consistent with (8) and xn as per (9). Following Atkinson’s
suggestion, it is very useful to interpret the Foward Euler scheme in a variety
of ways. Look at the interpretation of taking a single step:

0.1.3 Generalizations of Forward Euler by its Different
Interpretations

1. Geometric Interpretation. See Figure 0.1.3.

Dy

h
= Y ′(x0) = f(x0, Y0)

Y (x1)− Y (x0) ≈ D y = hY ′(x0)⇒ Y (x1) ≈ Y (x0) + hf(x0, Y (x0)),

Repeating the argument for [x1, x2], [x2, x3] · · ·

2. Taylor Series

Y (xn+1) = Y (xn) + hY ′(xn) +
h2

2
Y ′′(ξn)

︸ ︷︷ ︸
Tn=h2

2
Y ′′(ξn)

3. Numerical Differentiation

Y (xn+1)− Y (xn)

h
≈ Y ′(xn) = f(xn, Y (xn))

∴ Y (xn+1) ∼= Y ′(xn) + hf(xn, Y (xn))

4. Numerical Integration. See Figure 0.1.3

Integrate Y ′(x) = f(x, y)

Over [xn, xn+1]
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y

xx_0 x_1

Y1

Y2

z=Y(x)

tangent line at (x_0,Y1)

h

Dy

Figure 3: Geometrical interpretation of a single-step using Forward Euler
scheme
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y

x

z=f(y,x)

x_n x_n+h

Figure 4: Quadrature interpretation of single-step using Forward Euler
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Yn+1 = Yn +

∫ xn+1

xn

f(t, Y (t))dt

︸ ︷︷ ︸
L.H.S ≈hf (xn,Yn)

Remark. Interpretations (2) and (4) above form the basis of a set of methods
that are progressively more accurate.
{

(2) generalizes to what are known as SINGLE STEP METHODS
(4) generalizes to what are known at MULTI STEP METHODS.

Interpretation (3)→ doesn’t lead to many possibilities, but leads to a way to
solve stiff equations (to be discussed later). It also leads to an academically
interesting case, the Midpoint method, which is ideal to introduce the concept
of instability in the context of the approximate solution of ODE’s.

2

0.1.4 Errors in the Numerical Approximation of the
IVP

The numerical solution of (10) is an approximation to the solution of (7),
provided certain conditions are met and will be discussed presently. Why
is the numerical solution called an approximation? Because invariably there
are errors made. The types of errors incurred in the approximation are global
and local “truncation” and ”round-off” errors, along with errors related to
to machine representation. In what follows we will group round-off and
machine representation of numbers in one group and truncation errors in
another group. The truncation errors are present regardless of exactness of
machine representation of numbers or how the computation on the numerical
scheme is carried out. Roundoff error and machine errors have to do with
how the computation is carried out and on what type of machine. The Total
Error is the accumulation of both types of error.

Local (and Global) Truncation = error made in one step when we replace
an infinite process by a finite one (independent of round off error). (Global
is sum over all steps). The Local Round off = error made by computing
with limited precision on one step. (Global is cummulative round-off error).
Total Error = sum of roundoff and truncation error. The sources of roundoff

20



error are no different than those considered in the previous semester. The
new ones, which we will devote our attention, is the truncation error. We’ll
mostly ignore rounding errors for now.

Example Suppose we use forward Euler to approximate the solution of

{
Y ′ = f(x, Y )
Y (a) = Y0

and compare yh to true solution Y (x) as follows: make a table (assume for
simplicity that stepsize is constant and of size h). The table contains yh(xn)
for different values of h.

The table and its analysis constitute a “convergence analysis.” Most likely,
we don’t have Y (x), the exact answer. Suppose we do.

“error” ≡ Eh(x)
h x yn(x) Y (x) |yn − Y(x)|

0.20 0.40 approx true :
0.80 : : :
1.20 :
1.60 :

: :
0.10 1.40 approx true :

0.80 : : :
1.20 :
1.60 :

: :
0.05 1.40 approx true :

0.80 : : :
1.20 :
1.60 :

: :
etc.
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What you see:

(1) if numerical method is convergent ⇒ as h→ 0 yh(xn) will approach
Y (xn) uniformly.

(2) The last column shows the cummulative effect of errors, if any, in the
integration, as a function of xn for a given h. We will call this the
“Global error” ≡ Eh(xn)

Take E0.20(x
⋆), E0.10(x

⋆), E0.05(x
⋆) · · · , corresponding to h being halved,

and the absolute difference |yh−Y | at some x = x⋆. For Euler, we’ll see

that the error will drop by
1

2
if we have. Since error drops proportional

to h, we say the method’s local truncation error is of order h.

Another way we can convey the global error is by making a plot of E(h) as
a function of h. The convention is to plot E(h) on the vertical axis and h on
the horizontal axis, with h DECREASING along the right. Furthermore, the
plot should be a log-log plot. One picks a location x∗, sufficiently far from x0

(this is determined largely on common sense). The discretization is picked
so that for any x∗ is a value taken by xn for any given h. At this location
the error E(h) is recorded as a function of h for the same initial data. The
plot will show how this global error behaves as h is changed. Moreover, as
we will see later on, the slope of the log plot will indicate the “convergence
rate” of the method, if the method converges. More on this later. 2

Exercise. In some rare instances one can actually solve the resulting difference
equation analytically. For example, we wish to solve

(11)

{
Y ′ = 2x
Y (0) = 0.

Verify that the exact solution is Y (x) = x2. Let yn ≡ y(xn), xn = nh
n = 0, 1, · · ·

The forward Euler approximation to (11) is yn+1 = yn + 2hxn, with y0 = 0.

Solution of difference equation: (see difference equations from previous semester,
or use induction)

yn = xnxn−1 n ≥ 1

22



∴ En ≡ |Y (xn)− yn| = |x2
n − xnxn−1| = |hxn|

∴ Global error for each fixed value x is proportional to h

2

There’s more to the error analysis, of course. As always, the goal of scientific
computing and numerical work is not to compute exactly, but to know exactly
what errors are made. We need to learn a number of very useful theorems,
which we can be used to tell whether we can have confidence in the answer
obtained in a computation (remember as well that computers ALWAYS give
answers), and can be extended to design numerical solutions to your practical
problems. These theorems, together with detailed and careful work on the
assignments will go a long way to teach you the basics of numerical analysis
and scientific computing.

0.1.5 How is the Approximation Related to the IVP,
if at all?

The Big Questions about any scheme used to approximate an ODE and its
solutions are:

(a) Is Method Convergent?

(b) if so, How fast does error ց 0 as hց 0?

(c) Is method Consistent?

(c) Is method Stable?

(d) Is this the most computationally-efficient method to solve the ODE?

We begin to learn these concepts and also learn how to prove these for a
variety of different schemes.

First, a useful lemma:

Lemma. For any real x
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1 + x ≤ ex

for any x ≥ −1 0 ≤ (1 + x)m ≤ emx m > 0

Proof. Taylor ex = 1 + x+
x2

2
e

︸︷︷︸
remainder

always > 0 between 0 and x.

i.e.

0 ≤ 1 + x ≤ 1 + x+
1

2
x2eξ = ex.

The second statement trivially follows.

2

For simplicity, assume that f(x, y) satisfies stronger Lipschitz condition:

|f(x, y1)− f(x, y2)| ≤ L|y1 − y2|
{
−∞ < y1, y2 <∞
x0 ≤ x ≤ b

L > 0 (this condition is stronger than necessary · · · it just simplifies proofs
and avoids technicalities that can be mastered after this case is understood).

Remark. Forward Euler (see 0.1.2) is not the best ODE integrator: but it
is the simplest.

Theorem.

(Convergence for Forward Euler) Assume Y (x) is solution of IVP (with f
satisfying the Lipschitz condition) and

||Y ′′(x)||∞ ≤M ∀x ∈ [x0, b].

⇒ {yh(xn)|x0 ≤ xn ≤ b}
obtained by Euler method satisfies

max
x0≤xn≤b

|Y (xn)− yh(xn)| ≤ e(b−x0)L|e0|

+
e(b−x0)L − 1

L
τ(h)
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where τ(h) =
h

2
M and L is the Lipschitz constant associated with the IVP

and

e0 = Y0 − yh(x0).

If, in addition, |Y0 − yh(x0)| ≤ c1h as h→ 0

for some c1 ≥ 0 (e.g. Y0 = y0 for all h) ⇒ ∃ B ≥ 0 constant

max
x0≤xn≤b

|Y (xn)− yh(xn)| ≤ Bh

Remark. How big is B? Could be large!!

Proof. Let en = Y (xn)− y(xn), n ≥ 0.

let τn =
h

2
Y ′′(ξn) 0 ≤ n ≤ N(h) ≡ number of steps depends on h for fixed

[x0, b] interval. Also,

xn ≤ ξ ≤ xn+1

estimate: max0≤n≤N−1 |τn| ≤ τ(h) =
h

2
M

Now,

Yn+1 = Yn + hf(xn, Yn) + hτn

yn+1 = yn + hf(xn, yn) 0 ≤ n ≤ N(h)− 1

subtracting:

∴ en+1 = en + h[f(xn, Yn)− f(xn, yn)] + hτn(12)

|en+1| ≤ |en|+ hL |Yn − yn|︸ ︷︷ ︸
en

+h|τn|

|en+1| ≤ (1 + hL)|en|+ hτ(h) 0 ≤ n ≤ N(h)− 1

Apply (12) recursively:

|en| ≤ (1 + hL)n|e0|+ {1 + (1 + hL) + · · · (1 + hL)n−1}hτ(h)
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Recall: 1 + r + r2 + · · · rn−1 =
rn − 1

r − 1
r 6= 1.

∴ |en| ≤ (1 + L)n|e0|+
[(1 + hL)n − 1

L

]
τ(h)

using (1 + hL)n ≤ enhL = e(xn−x0)L ≤ e(b−x0)L

implies main result:

∴

max |Y (xh)− yn(xn)| ≤ e(b−x0)L|e0|+
e(b−x0)L − 1

L
τ(h)

The

max |Y (xn)− yn(x)| ≤ Bh(13)

follows trivially from ր above, with

B = c1e
(b−x0)L +

[
e(b−x0)L − 1

L

]
M

2

since by assumption |Y0 − yh(x0)| ≤ c1h as h→ 0

2

Equation (13) gives rate of convergence of method. (Parenthetically, a method
that does not converge is useless). But B estimate may be too large. We can
sharpen the estimate if the following holds:

Corollary.

Same hypothesis as previous theorem. In addition

∂f

∂y
(x, y) ≤ 0

{
x0 ≤ x ≤ b
∞ < y <∞

⇒ For h sufficiently small
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|Y (xn)− y(xn)| ≤ |e0|+
h

2
(xn − x0) max |Y ′′(x)|

for x0 ≤ xn ≤ b.

Proof. Apply Mean Value Theorem to

en+1 = en + h[f(xn, Yn)− f(xn, yn)] + hτn(14)

en+1 = en + h
∂f

∂Y
(xn, ζn)en +

h2

2
Y ′′(ξn)(15)

ζn between yn(xn) andY (xn)

Since yn converges to Y (xn) on [x0, b]⇒
∂f(xn, ζn)

∂Y
→ ∂f(x, Y (x))

∂y

and thus bounded in magnitude over [x0, b]. Pick h0 > 0 so that

1 + h
∂f(xn, ζn)

∂Y
≥ −1 x0 ≤ xn ≤ b ∀h ≤ h0

by assumption
∂f

∂Y
< 0∀h. Apply these 2 facts to (15) to get

|en+1| ≤ |en|+
h2

2
|Y ′′(ξn)|

and then by induction show |en| ≤ |e0|+
h2

2
[|Y ′′(ξ0)|+ · · ·+ |Y ′′(ξn−1)|]

which leads to result:

|Y (xn)− yn(xn)| ≤ |e0|+
h

2
(xn − x0) max

x0≤x≤xn
|Y ′′(x)|
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2

Next we consider the “stability of solutions”. An IVP may posess stable
or unstable solutions, or both. Whether it does depends on f(x, Y ), and
on the initial data. If the IVP problem is approximated using a numeri-
cal scheme, we would like the numerical scheme to have the approximate
solution behave as the IVP solutions being studied. However, it is possi-
ble that the discretization, may behave in ways that are different from the
IVP being approximated...the discretization depends not only on f and on
the initial data, but also on how the equation is discretized, on how big the
step size is, on how the dependent and independent variables are represented
mathematically and on the machine. The study of convergence enabled us
to determine whether the approximate solution approached the real solution
of the IVP as h got smaller for general choices of initial data and at what
rate (see0.1.5). Stability will detemine whether systematic errors (which are
usually very small) such as round-off and/or uncertainty in the initial data
will make arbitrarily close solution paths separate from each other at a rate
greater than linear. For the IVP, this is considered its innate behavior and it
is important to know whether what you’re approximating has this behavior.
For the numerical approximation, we want to know if what we are seeing
is due to the innate behavior of the IVP or due to using an inappropriate
scheme for the numerical approximation of the IVP.

Remark Numerical instability usually leads to spectacularly bad results,
i.e. code crashes. But if we had to rank what’s worse, lack of convergence or
instability, lack of convergence is actually worse: the reason is that lacking
convergence means that we are not solving the IVP we think we’re solv-
ing but some other IVP! Computationally, also, when instabilities manifest
themselves they usually force you to do something about it. But sometimes
non-convergent numerical schemes are happy to provide you with all sorts of
answers and you’d not suspect anything wrong...well, till you kill someone
by solving the wrong equation in the first place.

Stability of IVP

(16) Take

{
y′ = f(x, y) + δ(x)
y(x0) = Y0 + ε
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(17)

{
Y ′ = f(x, Y )
Y (x0) = Y0

f(x, y) continuous and satisfies a Lipschitz Condition (L.C.). Also, assume
δ(x) continuous for all (x, y) interior points to convex set. We show that
solution to (16) is controlled by ε and is unique. Then, we’ll use this to infer
stability and well-poseness. Note: ε is a perturbation parameter.

Theorem. (Perturbed Problem): Assume hypothesis on f(x, y) as above
and hypothesis on δ(x) as above. (16) has solution Y (x; δ, ε) on [x0−α, x0 +
α], α > 0, uniformly ∀ε perturbations and δ(x) that satisfy

|ε| ≤ ε0 ||δ||∞ ≤ ε0

for ε0 sufficiently small. In addition, if Y (x) is solution of (17), then

max
|x−x0|≤α

|Y (x)− Y (x; δ, ε)| ≤ k[|ε|+ α||δ||∞]

k =
1

1− αL

Proof: exercise. This theorem assumes that αL are sufficiently small. You’ll
also need

1 + r + r2 + . . . =
1

1− r
for r < 1 2

Studying the stability of an equation enables us to tell whether

1) Forward Euler (or any other numerical scheme) produces approximate
solutions that are close enough to Y (x), the exact solution. Very oftenly
we need to determine how close as well.

2) To identify whether equation is “STIFF” and/or “ILL-CONDITIONED”
(this is a topic considered a little later, but for now just think of “Stiff”
as “very difficult” to solve numerically.
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For simplicity, consider ε perturbations (the δ(x) ± 0 case is a little more
involved but enters as per previous theorem).

Take Y0 → Y0 + ε :

Y ′(x; ε) = f(x, Y (x; ε)) x0 − α ≤ x ≤ x0 + α

Y (x0; ε) = Y0 + ε.(18)

Subtract (18) from (17): let Z(x) = Y (x, ε)− Y (x)⇒ Z(x0, ε) = ε

then

(19) Z ′(x; ε) = f(x, Y (x; ε))− f(x, Y (x)) ≈ ∂f

∂Y
(x, Y (x))Z(x; ε)

Is Y (x; ε) close to Y (x) as x → ∞? Maybe, if ε is small enough and [x0 −
α, x0 + α] small.

We can solve (19)

Z(x; ε) ≈ εe

R x
x0

df

dY
(t, Y (t))dt

If
∂f

∂Y
(t, Y (t)) ≤ 0 |x0 − t| ≤ α ⇒ z(x, ε) remains bounded by ε as x

increases.

⇒WE SAY THAT (2) is WELL-CONDITIONED !

Example:
{
Y ′ = λY + g(x) λ > 0 λ constant.
Y (0) = Y0

∂f

∂Y
= λ and z(x, ε) = εeλx exactly

∴ perturbations grow large as x increases.

⇒ “ILL-CONDITIONED” and “STIFF” if λ LARGE

Example:

(20)

{
Y ′ = 100Y − 101e−x

Y (0) = 1

30



Solution Y (x) = e−x

take perturbations

Y ′ = 100Y − 101e−xY (0) = 1 + ε

Solution: Y (x; ε) = e−x + εe100x

which rapidly departs from true solution Y (x). We say that (20) is ill-
conditioned.

For well-conditioned we require that

∫ x

x0

∂f

∂Y
(t, y(t))dt be bounded from above

by 0 or a small positive number as x increases⇒ Z(x; ε) will be bounded by
constant times ε.

If
∂f

∂Y
≤ 0 but large ⇒ call ODE STIFF

and these cases present problems, numerically.

2

Stiffness is a qualitative assessment of an ODE or a system of them. In a
single ODE stiffness can be assessed as we did above by having some good
bounding criteria for f , and it is the bounding value that determines how
“stiff” the ODE is. In a system of ODE’s stiffness not only brings into
play the size of each f but also the relative size of each of these. That is,
in addition to the value of each fi, what also comes into play is the wide
discrepancy in the rate of change of the fi’s. If you think of x as a time
parameter and can bound the rate of change of each fi by a constant, say,
then if these constants are very disparate we say the ODE system is stiff and
it manifests its complication in the existence of a wide span of time scales in
the behavior of the solution.

Stability Analysis of Forward Euler Scheme

first we motivate problem with important example:

Example)

{
y′ = αy, α constant.
y(0) = y0 > 0

It has the exact solution: y(x) = eαxy0. Assume x > 0.
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Using Forward Euler: yn+1 = (1 + αh)yn → yn+1 = (1 + αh)ny0 take h
constant for simplicity.

Case (a): −1 < αh < 0 ⇒ solution positive and approaching 0.
Case (b): αh < −1 ⇒ sign of solution alternatives as n increases.
Case (c): αh > 0⇒ increases at each step

2

Definition: In general, for n = 0, 1, 2, · · · a scheme of the form yn+1 =
g(yn, yn−1, · · · y0) is said to be “explicit.” If yn+1 = g(yn+1, yn, yn · · · y0) then
scheme is said to be “implicit.” Example) Forward Euler is said to be an
“explicit” scheme because each yn+1 can be solved in terms of yn.

Stability Analysis for Forward Euler:

Consider

(21)

{
zn+1 = zn + h[f(xn, zn) + δ(xn)] 0 ≤ n ≤ N(h)− 1
z(0) = y0 + ε

and

(22)

{
yn+1 = yn + hf(xn, yn)
y0 = y(x0)

Look at {zn} and {yn} as h→ 0 and as n increases:

let
en = zn − yn , n ≥ 0⇒ e0 = ε

Subtract (22) from (21):

en+1 = en + h[f(xn, zn)− f(xn, yn)] + hδ(xn)

has same form as equation (15) ∴

max
0≤n≤N(h)

|zn − yn| ≤ e(b−x0)L|ε|+
[e(b−x0)L − 1

L

]
||δ||∞

∴ ∃ k, k2 independent of h with
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max
0≤n≤N(h)

|zn − yn| ≤ k1|ε|+ k2||δ||∞.

Effect of Rounding Errors:

take ρn to be the local rounding error and let

(23) ỹn+1 = ỹn + hf(xn, ỹn) + ρn n = 0, 1 . . . N(h)− 1

let





ỹn are finite precision numbers
yn be exact arithmetic.
ρ(h) ≡ max

0≤n≤N(h)−1
|ρn|

(24) Yn+1 = Yn + hf(xn, yn) +
h2

2
y′′(ξn)

Subtract (24) from (23): ẽn+1 = ẽn + h[f(xn, Yn)− f(xn, ỹn)] + hτn − ρn

where ẽn = Y (xn)− ỹ(xn) and τn ≡
h

2
Y ′′(ξn)

Use same arguments as before, but let τn − ρn/h replace τn of before

|ẽn| ≤ e(b−x0)L

∣∣∣∣Y0 − ỹ0

∣∣∣∣+
∣∣∣∣
e(b−x0)L − 1

L

∣∣∣∣
[
τ(h) +

ρ(h)

h

]
.

On a finite precision machine ρ(h) will not decrease as h→ 0 . . . it’ll remain
finite and approximately constant. Take

u ≡ ρ(h)

||Y ||∞
then

|ẽn| ≤ c
[h
2

∣∣∣∣Y ′′∣∣∣∣
∞ +

u

h

∣∣∣∣Y
∣∣∣∣

∞

]
≡ E(h)

We can find the h which minimizes the error. Call it h⋆. To find, set
dE(h⋆)

dh
= 0 and h∗ corresponding to minima.
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h

E(h)

truncation error

roundoff error

h*

Figure 5: Effect of Rounding Errors on Forward Euler
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See Figure 5.

Asymptotic Error Analysis

Recall that if B(x, h) is a function defined for x0 ≤ x ≤ b, for sufficiently
small h⇒
B(x, h) = O(hp) p > 0 near ∃ a constant c such that
|B(x, h)| ≤ chp x0 ≤ x ≤ b

Theorem. (Euler Error): Assume Y (x) = solution of ODE and 3 times
continuously differentiable. Assume fy and fyy are continuous and bounded
for x0 ≤ x ≤ b,−∞ < y <∞. Let the initial value yn(x0) satisfy

Y0 − yh(x0) = δ0h+O(h2)

usually this error is machine precision or zero.

Then the error in Forward Euler’s yn+1 = yn + hf(xn, yn) satisfies

Y (xn)− yh(xn) = D(xn)h+O(h2)

where

{
D′(x) = fy(x, Y (x))D(x) +

1

2
Y ′′(x)

D(x0) = δ0

Proof. before the proof, let’s do an example:

Example: y′ = −y y(0) = 1

has solution Y (x) = e−x. The D(x) equation is
{
D′ = −D +

1

2
e−x

D(0) = 0

∴ D(x) =
1

2
xe−x

So the error for Forward Euler is Y (xn)− yh(xn) ≈
h

2
xne

−xn

∴ the relative error
Y (xn)− yh(xn)

Y (xn)
≈ h

2
xn
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Calculation shows that the error is linearly proportional to h.

Remark. We say Euler is an “O(h) method”

Proof. Use Taylor’s

Y (xn+1) = Y (xn) + hY ′(xn) +
h2

2
Y ′′(xn) +

h3

6
Y ′′′(ξn)(25)

for some xn ≤ ξn ≤ xn+1

We have

(26) Y ′(x) = f(x, Y (x))

and

(27) yn+1 = yn + hf(xn, yn).

Subtract (27) from (25) and use (26)

(28) en+1 = en + h
[
f(xn, Yn)− f(xn, yn)

]
+
h2

2
Y ′′(xn) +

h3

6
Y (′′′)(ξn).

Continuity in f(x, y) allows us to expand around Yn:

f(xn, yn) = f(xn, Yn) + (yn − Yn)fy(xn, Yn) +
1

2
(yn − Yn)2fyy(xn, ξ)

for ξn between ynand Yn.

Plug into (28)

en+1 = [1 + hfy(xn, Yn)]en +
h2

2
Y ′′(xn) +Bn

Bn =
h3

6
Y (′′′)(ξn)−

1

2
hfyy(xn, ξn)e

2
n = 0(h3, he2n)(29)

Neglecting Bn, then the error




en+1 ≈ [1 + hfy(xn, Yn)]en +
h2

2
Y ′′(xn)

︸ ︷︷ ︸
gn

with
e0 = δ0h(since Y0 − yh(x0) = δ0h+O(h2))

So en = O(h)
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and en+1 = D(xn)h+O(h2)

Now, need to show that gn is principal part of error en. Let

kn = en − gn. k0 = e0 − g0 = O(h2) by

{
Y0 − y(x0) = δ0h+O(h2)
g0 = δoh

kn+1 = [1 + hfy(xn, Yn)]kn +Bn

kn+1 ≤ (1 + hL)|kn|+O(h3)

but |kn| = O(h)2at the very least ∴

en = gn + kn = [hO(xn) +O(h2)] +O(h2)

2

Forward Euler is a simple but not always appropriate scheme for solving
ODE’S. Let’s consider some alternatives:

0.1.6 Taylor-series Method

Consider the “Taylor Series” interpretation of problem (see 0.1.3). In this
method, we assume (or determine, which is the right thing to do) that all
the necessary partial derivatives exist.

Forward Euler was a first order method and in this light, results from keeping
the first term of Taylor series. Why not keep the pth order term in Taylor
series? Is this “better” than Forward Euler? In what ways? Clearly, it is
more expensive computationally, so if we are going to develop a technique
that is computationally more expensive we’d better make sure we find out in
what circumstances it works, if at all.

First, look at how this works by example:

Example: Solve

{
x′ = cos t− sin x+ t2

x(−1) = 3
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recall x(t+ h) = x(t) + hx′(t) +
1

2
h2x′′(t) +

1

6
h3x′′′(t) +

1

24
h4x′′′′(t) + · · ·

x′′ = − sin t− x′ cos x+ 2t

x′′′ = − cos t− x′′ cos x+ (x′)2 sinx+ 2

x
′′′′

= sin t+ (x′)3 cos x+ 3x′x′′ sinx− x′′′ cos x

let’s stop there. So we say that we’re constructing “an approximation of
order 4,” which means that THE LOCAL TRUNCATION ERROR is O(h5):
as h → 0 the local error is proportional to Ch5 (we don’t know what is C
and how big it is).

Algorithm

input M (steps), t0 and tf

output (xn, tn); compute

{
h = (tf − t0)/M,
tk = t0 + kh k = 0 · · ·M + 1

for k = 1 : M

x′ = · · ·
x′′ = · · ·
x′′′ = · · ·
x′′′′ = · · ·
xk+1 = xk + h

(
x′ +

h

2

(
x′′ +

h

3

(
x′′′ +

h

4
x

′′′′
)))

2

In above example we can calculate local truncation error:

En ≈
1

(n+ 1)!
hn+1x(n+1)(t+ θh) 0 < θ < 1

in above example n = 4. Could use simple finite differences:

E4 ≈
1

5!
h5

[
x(′′′′)(t+ h)− x(′′′′)(t)

h

]
=

h4

120

[
x(′′′′)(t+ h)− x(′′′′)(t)

]

Pros and Cons
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1) Number of operations can be large. This is not always a problem these
days considering how cheap and fast computers are at present. In
general the step size can be made larger the higher the order of the
Taylor scheme. But a computational count will tell you whether it is
more effective to compute a lot at each step, and take larger steps,
or compute little at each step and make due with smaller step sizes.
Usually it is more advantageous to go with good lower order method
and small steps, but this depends on the problem..

2) Need to know about smoothness of solution. This is neither a pro or a
con since you should always know this, but it is senseless to use a high
order method when the solution has unbounded high order derivatives.

3) Can use symbolic program to compute all the series expansion stuff
reducing programming errors, so in principle, it is not too hard to
compute high order derivatives required.

4) For oscillatory functions, a high order Taylor seems a good choice, but
can lead to problems of loss of significance in the computation if not
programmed carefully.

In general the high order Taylor Method is used “in special situations” such
as when we want the quantity at a point with low truncation error. 2

QUESTION: Do we always seek to use a high-order method? What does
the ORDER of a method have to do with accuracy?

First off, the “order” is a property of a particular scheme. The “accuracy”
merely refers to how “close” a particular approximation is to the exact an-
swer. It is actually up to you to define precisely to your audience what you
mean by “accurate”: it may simply mean how far the approximation is to an
exact answer, in some appropriate norm. But it can be more complicated:
as we will later see in the context of solving wave equations, accuracy may
be favoring the overall shape of the wave, rather than its magnitude, or its
overall phase, etc).

Suppose we define by accuracy merely the Euclidean distance between the
approximate and exact solution at a single point. Then, provided that a
scheme converges, the order of a method will tell you the rate at which, in
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the limit as the step-size goes to zero, the approximation approaches the
exact answer at any or all points in the domain of the problem. A high order
method will approach the exact answer at a faster rate, if you make your step-
size smaller. Now, suppose you have two different convergent schemes with
different rates of convergence. Is the one with higher order of convergence
more “accurate”?? The answer is “it depends”.

YES, if the step size is the same in both methods, the higher-order method
will be more accurate (assuming there are no round-off errors).

NO, not necessarily. If you compute with the low order method using a small
h and compute with the high order method with a large h it is possible to
get higher accuracy with the low order method.

Usually, high order methods are more involved computationally and low order
methods less so. Ultimately, you desire high accuracy and you’re willing to
pay for it in terms of time in computing. If a low order method takes little
computer time per time step, compared to a higher order method, the amount
of computer time required to get an answer depends on the per-step size time,
times the number of steps required. Hence, for a given accuracy you can (and
should) always estimate which method is best to use. Now, in these days of
fast computers, sometimes a low order method is preferred. But back in the
old days, when computers were really room-fulls of people operating adding
machines and/or slide rulers in a systematic way (cf. Virtual Museum of
Computing), high order methods were often sought. As you might imagine,
the “step-size” in problems solved in this fashion was required to be quite
large.

Another reason for which a low order method and/or an explicit method is
preferred to an implicit method has to do with the other issue in compu-
tational implementation: storage use. A high order method and/or some
implicit methods will require vast amounts of memory usage...in some cases,
more than you have. Often times the trade off amounts to giving up speed
in the computation in the interest of memory, which might force you to use
a lower order method and/or an explicit method.

The storage vs. speed on machines has become a more important issue
these days, of parallel computing. A scheme that requires a great deal of
communication between processors will tax most significantly the gains in
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speed-up possible in parallel processing. A low order method usually will be
more local, leading then to less communication between processors.

In summary, “Order” is not the End of All Things. Decide on what accuracy
you’re willing to live with and what your criteria is going to be. Then,
compare schemes for the approximation and include in your decision of which
one to pick the one that will deliver the most robust results with a level
of computational efficiency that you are willing to live with: this estimate
should be done WAY AT THE BEGINNING. There is no need to gamble
gobbs of time on an effort that you could have otherwise determined (with
little effort) is less than satisfactory.

0.1.7 Trapezoidal Rule

Adopt the ”integral” interpretation of problem (see 0.1.3). Recall Forward
Euler approximates derivative by a constant at xn

Yn+1 = Yn +
∫ xn+1

xn
f(t, Y (t))dt ≈ Yn + hf(xn, Y (xn))

The Trapezoidal rule estimates “height” of box by average of f at xn and
xn+1 :

yn+1 = yn + 1
2
h
[
f(xn, yn) + f(xn+1, yn+1)

]
(30)

i.e.

y(x) = y(xn) +

∫ x

xn

f(t, y(t))dt

≈ y(xn) +
1

2
(x− xn)(f(xn, yn) + f(xn+1, yn+1)).

To find the order of method, take an exact solution

Yn+1 = Yn + hY ′(xn) +
1

2
hY ′′(xn) +O(h3)
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and subtract (30):

Yn+1 −
{
yn +

1

2
h[f(xn, yn) + f(xn+1, yn+1)]

}

= Yn + hY ′(xn) +
1

2
h2Y ′′(xn) +O(h3)

−
{
yn +

1

2
h
[
y′n + [y′(xn) + hy′′(xn) +O(h2)]

]}
= O(h3)

Hence, trapezoidal is Order-2 Method. Before inferring that the error decays
globally as O(h2), we need to prove the method is convergent:

Theorem.

The Trapezoidal Rule is convergent.

Proof. Exercise (use strategy of multistep method considered later). 2

Consider trapezoidal on model

(31)

{
Y ′ = λY
Y (0) = 1 solution Y (x) = eλx

or more generally, on
{
Y ′ = λY + g(x)
Y (0) = Y0

where x > 0 and λ complex.

(32) ∴

{
yn+1 = yn + h

2
[λyn + g(xn) + λyn+1 + g(xn+1)] n ≥ 0

y0 = Y0

and perturbed case

{
zn+1 = zn + h

2
[λzn + g(xn) + λzn+1 + g(xn+1)] n ≥ 0

z0 = Y0 + ε

let wn = zn − yn. Subtracting:
{
wn+1 = wn + h

2
[λWn + λWn+1] n ≥ 0

w0 = ε

42



i.e. Trapezoidal rule again! Solution is what’s obtained by trapezoidal on
(31) except Y0 = ε.

∴ Can look at (31) to assess stability:

Apply trapezoidal on (31):

{
yn+1 = yn + hλ

2
[yn + yn+1] n ≥ 0

y0 = 1

Consider




Re(λ) < 0,
λ complex, with Re(λ) < 0⇒ Y ′ = λY + g(x) well-conditioned

i.e.
∂f

∂Y
≤ 0.

In this case we expect the limiting value of the approximation to be the same
as that of the solution, i.e. limx→∞ Y (x) = 0. So

yn+1 =
[1 + (hλ/2)

1− (hλ/2)

]
yn n ≥ 0

thus, by induction,

yn =
[1 + (hλ/2)

1− (hλ/2)

]n
y0 n ≥ 0

since y0 = 1. with hλ 6= 2. What we want to check is to see if there are any
limits imposed on h for the scheme to deliver an approximation that has the
same asymptotic quality as the exact solution.

For Re(λ) < 0

r =
1 + (hλ/2)

1− (hλ/2)
= 1 +

hλ

1− (hλ/2)
= −1 +

2

1− (hλ/2)

(33) ∴ −1 < r < 1 ∀h > 0 ∴ lim
n→∞

yn = 0

∴ no limitations on h in order to have boundedness of {yn} ∴ stability of
method on model equation (30) assured for ∀h > 0 and all (λ)
with Re(λ) < 0.
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Remark. This is stronger then in most methods were stability is assured
for sufficiently small h. (33) property Ah > 0 and Re(λ) < 0 is called
“A-Stability · · · important in stiff problems. (More later.)

Remark. Two asumptions lead to Trapezoidal: (A) approximate derivative
by constant (B) average (not discriminate) endpoints.

∴ another possibility:

y′(x) ≈ f(xn +
1

2
h,

1

2
(yn + yn+1)) x ∈ [xn, xn+1]

leads to “implicit midpoint” method:

yn+1 = yn + hf

(
t+

1

2
h,

1

2
(yn + yn+1)

)

Exercise: show that this scheme is 2nd order and convergent.

0.1.8 Theta Method

This method is also known as the weighted method. Both Euler and Trape-
zoidal rules fit an equation of the form

yn+1 = yn + h
[
θf(tn+1yn+1) + (1− θ)f(tn, yn)

]
n = 0, 1 · · ·

where θ ∈ [0, 1]. When θ = 0(explicit), where θ 6= 0 (implicit). Note that

θ = 0 is Euler, θ =
1

2
is Trapezoidal.

Order of Method: (Exercise) Show that the difference between the exact
solution and the above approximation at t = tn is

(θ − 1

2
)h2y′′(tn) +

(
1

2
θ − 1

3

)
h3y′′′(tn) + θ(h4)

hence method is order 2 for θ =
1

2
(corresponding to Trapezoidal) and oth-

erwise is of order 1. 2
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If we go through the usual argument (exercise), for h > 0 and sufficiently
small, then

en+1 = en + θh[f(tn, y(tn) + en)− f(tn, y(t)n))]

+(1− θ)h
[
f(tn+1, y(tn+1) + en+1)

−f(tn+1, y(tn+1))

]




− 1

12
h3y′′′(tn) +O(h4) θ = 1

2

+(θ − 1
2
)h2y′′(tn) +O(h3) θ 6= 1

2

Now, take en+1 as an unknown and apply implicit function theorem.

Ok, since f is analytic and for h > 0 sufficiently small, the matrix

I − (1− θ)h∂f(tn+1, y(tn+1))

∂y
is nonsingular.

Then, using the implicit function theorem one can can show (try it!)

en+1 = en





− 1

12
h3y′′′(tn) +O(h4) θ = 1

2

+(θ − 1
2
)h2y′′(tn) + θ(h3) θ 6= 1

2

Why bother with the Theta Method i.e. with θ taking any value in [0, 1],
not just 1/2 and 1?

1) The concept of order is based on assumption that error is concentrated
on the leading order of Taylor series expansion (on real computers, h

is small, but finite). e.g. θ =
2

3
gets rid of O(h3) while retaining

O(h2). Hence, for different types of f(t, y) one can tune θ to control
whether O(h3) and higher order terms or O(h2) and higher order terms
contribute to the overall error when h is finite. It may be possible to
choose a θ that generates a more optimal or smaller error . . ..

2) Theta Method is an example of a general approach to designing algo-
rithms in which geometric intuition is replaced by Taylor series expan-
sion. Invariably the implicit function theorem is also used in the design
and analysis of scheme.
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3) The θ = 1 Case is very practical:

yn+1 = yn + hf(tn+1, yn+1) n = 0, 1, · · ·
This is the “Backward Euler” or “Implicit Euler” scheme, a simple yet
robust method for solving STIFF ODES (Stiffness will be discussed
later in detail).

4) Comparison of the Trapezoidal and Euler methods (see reftreu) will be
done later, but the Euler method is more dissipative than the trape-
zoidal and in some problems a little more or a little less dissipation is
appropriate or wanted.

0.1.9 The Runge-Kutta Family (RK)

Now we revert to a “Taylor series” interpretation of problem (see 0.1.3).
We consider in some detail the EXPLICIT CASE and will make only cur-
sory comments on the IMPLICIT Runge-Kutta methods. RK are single-step
methods and can be either explicit or implicit. Later we’ll consider multi-step
methods.

Perhaps the most popular ODE integrator around, because it is explicit, eas-
ily programmable, of high order, and applicable to even mildly stiff problems:
4th-order ERK (Explicit Runge Kutta) or ERK4. The 2nd order → ERK2
is known as Heun’s Method and is also popular but used less often.

Pro’s: simple to program
truncation error can be straight forward to control
Good packages available (see Netlib, NIST, even matlab).
Decent stability regimes.

Con’s: Requires many more evaluations of derivative to obtain same accuracy
as compared to multistep methods.
Only appropriate for non-stiff and very mildly stiff equations.
Mild dissipation (invariably one uses small-order ERK method).

All ERK’s are written as

yn+1 = yn + h
ν∑

j=1

bjf (xn + cjh, y(xn + cjh)) ≡ yn + hF (xn, yn, h, f))n ≥ 0,
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where c′js are between 0 and 1. The whole point is to specify y at the locations
xn + c1h, xn + c2h, · · · , xn + cνh and find the corresponding bj. These b′js
must sum to 1 so that we get a weighted average. What’s the criteria? The
choice of the entries in the vectors b and c make the leading terms in the
truncation error equal to zero. Additionally, we want

F (x, Y (x), h; f) ≈ Y ′(x) = f(x, Y (x)), for small h

Example: Take trapezoidal with an Euler predictor step

(34) yn+1 = yn +
h

2

[
f(xn, yn) + f(xn+1, yn + hf(xn, yn))

]

or yn+1 = yn + hF What’s F? See Figure 6.

∴ F is average slope on [x, x+ h]!

Example) Another method based on average slope is

yn+1 = yn + hf

(
xn +

1

2
h, yn +

1

2
hf(xn, yn)

)
(35)

Here F = f

(
x+

1

2
h, yn +

1

2
hf

)

both (34) and (35) are 2nd order.

To illustrate general procedure: ERK2 “Heun’s Method”

(36) Y (x+ h) = Y (x) + hY ′(x) +
h2

2!
Y ′′(x) +

h3

3!
Y ′′′(x) · · ·

and




Y ′ = f
Y ′′ = fx + fY y

′ = fx + fY f
Y ′′′ = fxx + fxY f + (fx + fY f)fY + f(fxY + fY Y f)
etc.
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x x+h

slope=f(x,Y(x))
average
slope=F

slope=
f(x+h,Y(x)+hf(x,Y(x)))

z=Y(X)

Y(x)+h F
Y(x)

Figure 6: Geometrical interpretation of average slope
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so (36) can be written as

Y (x+ h) = Y + hf +
1

2
h2(fx + fY f) +O(h3)(37)

= Y +
h

2
f +

1

2
h[f + hfx + hffY ] +O(h3)(38)

but note that f(x+ h, Y + hf) = f + hfx + hffY +O(h2)

so substitute in (36)

Y (x+ h) = Y +
1

2
hf +

h

2
f(x+ h, Y + hf) +O(h3)




∴ y(x+ h) = y +
h

2
f +

h

2
f(x+ h, y + hf) +O(h3)

F1 = hf F2 = hf(x+ h, f + F1)
is an ERK2 method

known as Heun’s Method.

ERK4 Classical

y(x+ h) = y(x) +
1

6
(F1 + 2F2 + 2F3 + F4)

with





F1 = hf(x, y)

F2 = hf(x+ 1
2
h, y +

1

2
F1)

F3 = hf(x+ 1
2
h, y +

1

2
F2)

F4 = hf(x+ h, y + F3)

General Method:

yn+1 = yn + h

ν∑

j=1

bjf(xn + cjh, y(xn + cjh)) n = 0, 1 . . .

let “approximant”

y(xn + cjh) = ξj j = 1, 2, · · · ν
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let
c1 = 0 so ξ1 = yn

The idea is to express each ξj with j = 2, 3, · · · ν by updating yn with a linear
combination of

f(xn, ξ), f(xn,+hc2, ξ2) · · · f(xn + hcj−1, ξj−1),i.e.

ξ1 = yn

ξ2 = yn + ha2,1f(xn, ξ1)

ξ3 = yn + ha3,1f(xn, ξ1) + ha3,2f(xn + c2h, ξ2)
...

... ν − 1

ξν = yn + h
∑

i=1

aν,if(xi + cih, ξi)

⇒ yn+1 = yn + h

ν∑

i=1

bjf(xn + cjh, ξj)

The matrix A ≡ Aj,i j, i = 1, 2 · · · ν ≡ RK matrix

b = [b1b2 · · · bν ]T ≡ RK weights

c = [c1c2 · · · cν ]T ≡ RK nodes

and we say that method has “ν stages”

Take simple case, with ν = 2. Assume f smooth, for simplicity,

ξ1 = yn

f(xn + c2h, ξ2) = f(xn + c2h, yn + a21, hf(xn, yn))

= f(xn, yn) + h

[
c2
∂f

∂x
(xn, yn) + a2,1

∂f

∂y
(xn, yn)f(xn, yn)

]
+O(h2)

(39) ∴ yn+1 = yn + h(b1 + b2)f(xn, yn) + h2b2

[
c2
∂f

∂x
+ a21

∂f

∂y
f

]
+O(h3)

but we note that Y ′′ =
∂f

∂x
+
∂f

∂Y
f from Y ′ = f(x, y), the IVP, and exact

solution

(40) Yn+1 = Yn + hf(Yn, xn) +
1

2
h2
[∂f
∂x

(xn, Yn) +
∂f

∂Y
(xn, Yn)f

]
+O(h3)
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∴ comparing (39) and (40) gives us

(41) b1 + b2 = 1 b2c2 =
1

2
a2,1 = c2

So we see that a 2-stage is not uniquely defined. Popular choices are

0
1
2

1
2

0 1

0
2
3

2
3
1
4

3
4

0
1 1

1
2

1
2

“RK Tableaux”
c A

bT

3-Stage Examples (both are 3rd order)

“Classical”

0
1
2

1
2

1 −1 2
1
6

2
3

1
6

System

0
2
3

2
3

2
3

0 2
3

1
4

3
8

3
8

4-Stage (fourth-order)

0
1
2

1
2

1
2

0 1
2

1 0 0 1
1
6

1
3

1
3

1
6

Compare to Yn+1 = yn +
1

6
(F1 + 2F2 + 2F3 + F4)

with





F1 = hf(xn, yn)

F2 = hf

(
xn + 1

2
h, yn +

1

2
F1

)

F3 = hf(xn + 1
2
h, yn +

1

2
F2)

F4 = hf(xn + h, yn + F3)

Relation between order and number of stages:

Max stages 1 2 3 4 5 6 7 8
Max order 1 2 3 4 4 5 6 6
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Not worth it usually if number of stages is much greater than max order.

IMPLICIT RK(IRK): We won’t study in detail. Complicated. Used in stiff
equation solutions because they exhibit superior stability properties.

Generally: ξj = yn + h
ν∑

i=1

aj,if(xn + cih, ξi) j = 1, 2, · · · ν

yn+1 = yn + h
ν∑

j=1

bjf(x1 + cjh, ξj)

Here A ≡ (aj,i) is no longer lower triangular.

ν∑

i=1

aj,i = cj j = 1, 2, · · · ν by convention.

So for y ∈ Rd we get ν coupled algebraic equations.

For references see J.C. Butcher “The Numerical Anaylsis of ODE’S,” John
Wiley Publ. (He’s one of the world’s experts).

2

RK-FEHLBERG (RKF) This is an adaptive step size method which illus-
trates how error control can be incorporated into RK. The technique is not
only applicable to RK, though. It is based on an idea similar to Richard-
son extrapolation The idea is to adapt the step size to control the error and
ensure error is kept within a (reasonable) specified bound, epsilon. It is an
example of a scheme that incorporates “error control”.

Most popular

{
5 stage 4th order
6 stage 5th order

General strategy:

Take

{
Y ′ = f(x, Y )
Y (x0) = Y0

For presentation purposes we will assume that the schemes under considera-
tion are explicit, single step and that the scheme for wn+1 has a truncation er-

ror τn+1(h) = O(hm) Assume the scheme is of the form

{
wn+1 = wn + hf(xn, wn, h)
w0 = Y0
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Use another scheme with τ̃n+1(h) = O(hm+1)

Take

{
zn+1 = zn + hf(xn, zn, h)
z0 = Y0

Assume that wn ≈ zn ≈ Y (xn), i.e. assume that the schemes w and z are
convergent. The if we subtract

Yn+1 − wn+1 = Yn+1 − wn − hf(xn, wn, h) ≈ Yn+1 − Yn − hf(xn, yn, h)

= hτn+1(h)

so τn+1 ≈
1

h

[
Yn+1 − wn+1

]
=

1

h
[Yn+1 − zn+1] +

1

h
[zn+1 − wn+1]

∴ τn+1 ≈ τ̃n+1 + 1
h
[zn+1 − wn+1]

but τn+1 = O(hm) and τn+1 = O(hm+1) hence the major error contribution

τn+1 ≈
1

h
[zn+1 − wn+1]

The idea is to adjust the step size to stay within a certain error bound.

Since τn+1(h) = O(hm) ∴ τn+1(h) = Khm

τn+1(qh) ≈ K(qh)m = qm(Khm) ≈ qmτn+1(h) =
qm

h
(zn+1 − wn+1)

So choose q such that

qm

h
|zn+1 − wn+1| ≈ |τn+1(qh)| ≤ ε

or

q ≤
(

εh

|zn+1 − wn+1|

) 1

m

2 Hence, q is a multiplicative factor that scales the time step h, ǫ is the
error tolerance and is a specified input to the code.

You might be wondering about the fact that in the above expression zn+1

and wn+1 appear and these are quantities that are sought after. What’s done
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algorithmically is not unique: one possibility is to take a step and produce
some proxi zn+1 and wn+1. Make the estimate as per above equation, and if
it is not satisfied, reduce q till it is. Then do the real time step.

Note, also, that on implementation, it is possible for the above condition not
to be satisfied (either because you chose an ǫ that is unreasonable small, or
because the method should not be applied to the IVP in the first place).
Hence, an escape sequence should be supplied in the algorithm so that the
user gets a warning of the method’s failure.

An implementation of this is ERKF4: use a 5th order RK to estimate the
4th order RK (there’s one for 5th-order equations as well and it is easily
derivable.)

ALGORITHM

INPUT x0, b, initial condition α, TOL, hmax, hmin
OUTPUT x, y, h

Step 1 x = x0 ; y = α, h = hmax, FLAG=1; output(x, y);
Step 2 While (FLAG=1) do Step 3-11
Step 3

K1 = hf(x, y)

K2 = hf(x+
1

4
h, y +

1

4
K1)

K3 = hf

(
x+

3

8
h, y +

3

32
K1 +

9

32
K2

)

K4 = hf

(
x+

12

13
h, y +

1932

2197
K1 −

7200

2197
K2 +

7296

2197
K3

)

K5 = hf

(
x+ h, y +

439

216
K1 − 8K2 +

3680

513
K3 −

845

4104
K4

)

K6 = hf

(
x+

h

2
, y − 8

27
K1 + 2K2 −

3544

2565
K3

+
1859

4104
K4 −

11

40
K5

)

R =
1

h

∣∣∣ 1

360
K1 −

128

4275
K3 −

2197

75240
K4 +

1

50
K5 +

2

55
K6

∣∣∣
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% Note: R =
∣∣∣ỹn+1 − yn+1

∣∣∣h
2

Step 5 δ = 0.84 (TOL/R)
1

4

Step 6 if R ≤ TOL do steps 7&8

Step 7 x = x+ h

y = y +
25

216
K1 +

1408

2565
K3 +

2197

4104
K4 −

1

5
K5

Step 8 output (x, y, δ)

Step 9 if δ ≤ 0.1 then h = 0.1h
else if δ ≥ 4 then set h = 4h
else set h = δh% (Calc new h).

Step 10 if h > hmax then h = hmax

Step 11 If x ≥ b the FLAG = 0
else if x+ h > b then h = b− x
else if h < hmin then
set FLAG = 0
output (’minimum x step is exceeded’).

Step 12 STOP, END

2

Two final remarks are in order:

1) the formal introduction of the method in a schematic way is meant to
convey that the trick is general and can be constructed using other schemes,
in addition to RK. The overall choice of methods to combine should be
dictated by the overall goal: to exploit adaptivity to make the computation
more efficient, and to make codes that are more robust and less prone to
users’ bad choice of time stepping parameters.

2) All too often scientists will try to use adaptivity in step size to try to
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circumvent a problematic nature of an IVP. Adaptivity is useful when the
problem exhibits solutions that have periods of high activity, followed by pe-
riods of low activity. It is important that you learn to recognize the difference
between an IVP that is STIFF and one that merely has periods of heightened
activity. It is common for people to think that one can still use an explicit
method with adaptivity to counteract the stiffness of an IVP. This is not
true in general, although it might work in some circumstances. Adaptivity
might force a method to stay within its stability region, by making h small
enough. It works properly if the stability range gets significantly smaller and
larger as the code steps through the approximate solution. It does not work,
when the code is forced to use a small step and then is forced to keep such
small step for the rest of the integration interval: you’re better off coding
something up that is simpler and more robust and forego adaptivity, since it
brings no benefit. And of course, it goes without saying, that if you choose
a method for which no h value could produce a stable approximation, then
adaptivity is not going to help things...

Convergence Analysis for ERK

yn+1 = yn + hF (xn, yn, h; f) n ≥ 0

Define the truncation error as

Tn(Y ) = Y (xn+1)− Y (xn)− hf(xn, Y (xn), h; f) n ≥ 0

and
Tn(Y ) = hτn(Y )

For convergence we require that τn(Y )→ 0 as h→ 0.

τn =
Y (xn+1)− Y (xn)

h
− F (xnY (xn), h; f)

then require

F (x, Y (x), h; f)→ Y ′(x) = f(x, Y (x)) as h→ 0

Let δ(h) = max
x0≤x≤b

−∞<y<∞

∣∣f(x, y)− F (x, y, h; f)
∣∣
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F is picked so that δ(h) → 0 as h → 0 “CONSISTENCY CONDI-
TION” (require Lipschitz constant to be defined)

|F (x, y, h; f)− F (x, z, h; f)| ≤ L|y − z|
for all x0 ≤ x ≤ b & −∞ < y <∞ and small h.

For a particular ERK2 from before:

Example:

∣∣∣F (x, y, h; f) − F (x, z, h; f)
∣∣∣ =

∣∣∣f
(
x+

h

2
, y +

h

2
f(x, y)

)
− f

(
x+

h

2
, z +

h

2
f(x, z)

) ∣∣∣

≤ K
∣∣∣y − z +

h

2
[f(x, y)− f(x, z)]

∣∣∣ ≤ K

(
1 +

h

2
K

)
|y − z|

choose L = K

(
1 +

1

2
K

)
for h ≤ 1

Theorem (Error and Convergence):

Assume Runge-Kutta yn+1 = yn+hF satisfies Lipschitz Constant on F ⇒
for IVP the solution {yn} satisfies

max
x0≤xn≤b

|Y (xn)− yn| ≤ e(b−x0)L|Y0 − y0|+
[e(b−x0)L − 1

L

]
τ(h)

τ(h) = max
xa<xn≤b

|τn(Y )|

If the consistency condition δ(h)→ 0 as h→ 0⇒ {yn} → Y (x)

Proof: exercise. 2

Corollary If the Runge-Kutta has truncation error O(hm+1)⇒ rate of con-
vergence of {yn} to Y (x) is O(hm)

Proof: exercise. 2

We will defer discussion of stability to after we talk about multistep methods.
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0.1.10 Multi-step Methods

Multi-step methods come from the Quadrature Interpretation of original
problem (see 0.1.3). These schemes use a number of previously computed
approximate solutions at previous x-steps to find the solution at the current
step. Why use a multi-step method? Can get higher order truncation errors
and are generally efficient since the computations are usually elementary.
Again, there are implicit and explicit multistep methods.

Take initial value problem and advance one step (again, consideration is
limited to equally-spaced nodes in x). Multi-step methods can be written as

(42) yn+1 = yn +

∫ xn+1

xn

f(t, y(t))dt = yn−r +

∫ xn+1

xn−r

f(t, y(t))dt.

ADAMS-BASHFORTH FORMULA (AB)

yn+1 = yn + afn + bfn−1 + cfn−2 · · ·
where fn ≡ f(xn, yn), yn = y(xn)

a, b, c, . . . are constants

Example: Adams-Bashforth, order 5:

AB5 : yn+1 = yn +
h

720
[1901fn + 2616fn−2 + 251fn−4− 2774fn−1− 1274fn−3]

Coefficients come from the following:

(43)

∫ xn+1

xn

f(t, y(t))dt ≈ h[Afn +Bfn−1 + Cfn−2 +Dfn−3 + Efn−4]

and require that (43) be exact when f is a polynomial of degree at most
4. Let us consider how the AB5 is constructed: Denote Pk be the family of
polynomials of degree at most k. Recast problem of finding coefficients into
a linear algebra problem . . . Without loss of generality, work this out at
xn = 0 and assume that h = 1.

P4 = {1, x, x(x+1), x(x+1)(x+2), x(x+1)(x+2)(x+3)} ≡ {p0, p1, p2, p3, p4} is a basis
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then enforce
∫ 1

0

pn(t)dt = Apn(0) +Bpn(−1) + Cpn(−2) +Dpn(−3) + Epn(−4)

obtain: 



A+B + C +D + E = 1
−B − 2C − 3D − 4E = 1

2

2C + 6D + 12E = 5
6

−6D − 24E = 9
4

24E = 251
30

This is a “Method of Constant Coefficients”, a general technique that can be
used to obtain any order formula (see 475A notes on quadrature techniques).

Remark. One can generate Pn basis conveniently using Newton difference
formulas (see 475A notes on Newton difference formulas). In fact, it is a
good idea to review notes on quadrature and on interpolation, in particular,
Gaussian and Chebychev Quadrature and interpolation, to draw conclusions
on whether it makes sense to use a nonuniform grid from a practical point of
view.

Exercise) Why are these not used in initial value problems all that often, if
at all?

ADAMS-MOULTON FORMULAS (AM)

Assume (42) can be written as

yn+1 = yn + afn+1 + bfn + cfn−1 · · ·
ր

new

Example: (AM5)

(44) yn+1 = yn +
h

720
[251fn+1 + 646fn + 106fn−2 − 264fn−1 − 19fn−3]

derived by Method of Undetermined Coefficients (exercise).

Note the appearance of fn+1, making this method implicit.
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How to advance (44) in n?

Answer: use AB5 as “predictor” then an AM5 “corrector”:

ABN ỹn+1 = yn + afn + bfn−1 · · · Predictor

AMN yn+1 = yn + pf̃n+1 + qfn . . . Corrector

where N is the order (want to use same order for predictor and corrector,
usually)

and

{
fn = f(xn, yn)

f̃n = f(xn, ỹn)

How to start integration?

Commonly → use ERKN (explicit Runge-Kutta of order N) to find enough
yn’s for the multi-step to take over.

Another way→ use incremental-order incremental-sized-step multi-step method.

Another way → use above in conjunction with fixed point iteration to find
the implicit part of the AM stage.

Exercise) write down in detail the algorithmic strategies to accomplish these
last two choices above.

Multi-Step Scheme Convergence and Stability

Assume xn = x0 + nh

n = 0, 1, 2 . . . N(h)

b = x0 +N(h)h

h =
b− x0

N(h)
.

As usual, let yn = y(xn).

Express multi-step method as

yn+1 =

p∑

j=0

ajyn−j + h

p∑

j=−1

bjf(xn−j, yn−j)(45)

xp+1 ≤ xn+1 ≤ b
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For the initial value problem

{
Y ′ = f(x, Y )
Y (0) = Y0

with Y = Y (x), f continuous. Also assume there exists a Lipschitz constant.

Some definitions: we say

• Stable Numerical Method→ if all the approximating solutions {yn}
are “stable.” Here {yn|0 ≤ n ≤ N(h)} is an approximate solution.

• Stable Approximating Solutions: Let {yn} be approximate solu-
tions for h < h0 sufficiently small. For each h ≤ h0, perturb the initial
values

y0, y1 · · · yp to new values z0, z1 . . . zp with

max
0≤n≤p

|yn − zn| ≤ ε 0 < h ≤ h0

Note: initial values usually depend on h.

We say {yn} “stable” if ∃ c, constant, independent of h ≤ h0, and valid
for all ε small enough, for which

max
0≤h≤N(h)

|yn − zn| ≤ cε 0 < h ≤ h0.

2

• Convergent Scheme→ for initial value problem: suppose initial val-
ues

y0, y1 · · · yp
satisfy

η(h) ≡ max
0≤n≤p

|Y (xn)− yn| → 0 as h→ 0

⇒ {yn} is said to converge to Y (x) if

max
x0≤xn≤b

|Y (xn)− yn| → 0 as h→ 0

if (45) convergent for all y solutions of the IVP ⇒ “Convergent Nu-
merical Method”.
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Remark. Non-convergent numerical methods are useless in a practical
setting!

2

• Consistent Scheme: if

1

h
max

x0≤xn≤b
|Tn(Y )| → 0 as h→ 0 ∀Y (x) continuously differentiable on [x0, b]

where Tn(Y ) ≡ truncation error

i.e. Tn(Y ) = Y (xn+1)-numerical scheme

∣∣∣∣
xn+1

2

Theorem. Convergence implies consistency.

Proof. (will be proven in context of numerical solution of partial differential
equations, later discussed in this class) (see 0.4). 2

Stability of Multi-step Methods
that is, of

yn+1 −
p∑

j=0

ajyn−j − h
p∑

j=−1

bjf(xn−j, yn−j) = 0.

which is a difference equation. We want to consider in detail the issue of
stability of multi-step methods. Recall from our consideration of Difference
Equation solutions to the Null-space problem (see See Difference Equations.)
that it is sensible to assume that there exists a polynomial associated with
(45) of the form

ρ(r) = rp+1 −
p∑

j=0

ajr
p−j

Note: ρ(1) = 0 from consistency condition:

p∑

j=0

aj = 1

∑p
j=0 jaj +

∑p
j=−1 bj = 1

(Theorem not quoted
shows that
←
implies consistency)

Let r0 = 1, r1, r2 . . . rp be roots. Then
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(45) satisfies “Root Condition” if

|rj| ≤ 1 j = 0, 1, . . . p

for |rj| = 1⇒ these must be simple roots.

THE BIG PICTURE:

Strong ⇒ Relative Stability
Root
⇓ ⇓

Convergence ⇐⇒ Root ⇐ Stability
Conditions

Theorem. (Stability) Suppose (45) is consistent. Then (45) is stable if and
only if the root condition is satisfied.

Example:

yn+1 = 3yn − 2yn−1 +
h

2
[f(xn, yn)− 3f(xn−1, yn−1)] n ≥ 1

Tn(Y ) =
7

12
h3Y ′′′(ξn) xn−1 ≤ ξn ≤ xn+1

consider

{
y′ = 0
y(0) = 0

⇒ Y (x) = 0

So if y0 = y1 = 0 and yn = 0 n ≥ 0. Perturbation z0 = ε/2, z1 = ε⇒

zn = ε2n−1 n ≥ 0

So

max
x0≤xn≤b

|yn − zn| = max
0≤xn≤b

|ε|2n−1 = |ε|2N(h)−1

and N(h)→∞ as h→ 0 ∴ unstable

Compute ρ(r) = r2 − 3r + 2 with roots r0 = 1, r1 = 2 ∴ Root condition
violated. Since we’re at it, we should probably also do the more general
problem of looking at a system

{
y′ = f(x,y) y ∈ Rm

y(0) = y0 f ∈ Rm
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if f is differentiable ⇒ J ≡ ∂fi
∂yj

1 ≤ i, j ≤ m

⇒ y′ = ∧y + g(x) m×m system

with ∧ = fy(x0,Y0) with λ1, λ2, . . . λm eigenvalues.

We can can make some headway in understanding what happens in the sys-
tem case by considering what happens in the simpler problem

{
y′ = λy
y(0) = 1

Using (45)

yn+1 =

p∑

j=0

ajyn−j + hλ

p∑

j=−1

bjyn−j

(1− hλb−1)yn+1 −
p∑

j=0

(aj + hλbj)yn−j = 0 n ≥ p

“homogeneous linear differential equation of order p+ 1”

See Difference Equations.

To solve, let
yn = rn n ≥ 0

and hope to find p + 1 linearly independent solutions so that any solution
can be expressed as a linear combination.

Substitute rn and cancel rn−p

(46) (1− hλb−1)r
p+1 −

p∑

j=0

(aj + hλbj)r
p−j = 0.

Let σ(r) ≡ b−1r
p+1 +

p∑

j=0

bjr
p−j,

(45) becomes
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(47) ρ(r)− hλσ(r) = 0

known as the “characteristic equation.”

Denote roots as r0(hλ), . . . rp(hλ) depending continuously on hλ. When hλ =
0 (47) becomes

ρ(r) = 0 so rj(0) = rj j = 0, 1 . . . p.

ր
roots of ρ(r).

If rj(hλ) are distinct then

yn =

p∑

j=0

γj[rj(hλ)]n n ≥ 0

if rj(hλ) has a root of multiplicity ν > 1 construct extra ν linearly indepen-
dent by

[rj(hλ)]n, n[rj(hλ)]n, . . . nν−1[rj(hλ)]n . . .

2

Proof. (Stability Theorem)

Here we present a simplified proof (see Isaacson and Keller ’66 for full proof).

1) Assume root condition satisfied.

2) Roots are distinct rj(0) and rj(hλ) 0 < h ≤ h0.

Take zn and yn as solutions to

(1− hλb−1)yn+1 −
p∑

j=0

(aj + hλbj)yn−j = 0 on [x0, b]

let en = yn − zn and assume

(48) max
0≤n≤p

|yn − zn| ≤ ε 0 ≤ h ≤ h0
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∴ en+1(1− hλb−1)−
p∑

j=0

(aj + hλbj)en−j = 0 for xp+1 ≤ xn+1 ≤ b(49)

with solution en =

p∑

j=0

γj[rj(hλ)]n n ≥ 0

The coefficients must satisfy



γ0 + γ1 · · · γp = e0
γ0r0(hλ) + · · · γprp(hλ) = e1

...
γ0[r0(hλ)]p + · · · γp[γP (hλ)]p = ep




then e0 . . . ep will satisfy (49)

Using linear theory and (48) ⇒ max
0≤i≤p

|γi| ≤ c1ε 0 < h ≤ h0

To bound en on [x0, b] we must bound each [rj(hλ)]n. To do so, consider

(50) rj(u) = γj(0) + ur′j(ζ)

for some ζ between 0 and u (variation of parameters). Compute r′j: differ-
entiate characteristic equation

ρ(rj(u))− uσ(rj(u)) = 0

Therefore

(51) r′j(u) =
σ(rj(u))

ρ′(rj(u))− uσ′(rj(u))

by assumption rj(0) simple root of ρ(r) = 0 0 ≤ j ≤ p ∴ ρ′(rj(0)) 6= 0 and
by continuity, ρ′(rj(u)) 6= 0 for all u small ∴ denominator not zero and

|r′j(u)| ≤ c2 ∀|u| ≤ u0 for some u0 > 0.

Using (50) and the root condition: |rj| ≤ 1, we get

|rj(hλ)| ≤ |rj(0)|+ c2|hλ| ≤ 1 + c2|hλ|

|[rj(hλ)]n| ≤ [1 + c2|hλ|]n ≤ ec2n|hλ| ≤ ec2(b−x0)|λ| ∀h ≤ h0.

∴ max
x0≤x≤b

|en| ≤ c3|ε|ec2(b−x0)|λ| 0 < h ≤ h0
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2

Theorem. (Convergence, Dahlquist Equivalence Theorem) Assume scheme
is consistent. Then (45) is convergent if and only if root condition is satisfied.

Proof. Assume root condition is satisfied. Again, general proof in Isaacson
and Keller. Assume rj(0) distinct.

Again {
y′ = λy
y(x0) = 1

and
γ0[r0(hλ)]n

of

yn =

p∑

j=0

γj[rj(hλ)]n

converges to solution Y (x) = eλx on [x0, b]. The remaining terms γj[rj(hλ)]nj =
1, . . . p are parasitic and shown to → 0 as h→ 0.

Expand r0(hλ) = r0(0) + hλr′(0) +O(h2).

From (51) r0(0) =
σ(1)

ρ′(1)

and using consistency condition

p∑

j=0

aj = 1 and
∑p

j=0 jaj +
∑p

j=−1 bj = 1

leads to r′0(0) = 1. Then r0(hλ) = 1 + hλ+O(h2) = eλh +O(h2)

[r0(hλ)]n = eλnh[1 +O(h2)]n = eλxn [1 +O(h)]

over x0 ≤ xn ≤ b finite.

Thus
max

0≤xn≤h
[|r0(hλ)|n − eλxn ]→ 0 as h→ 0

We must now show that the coefficient γ0 → 1 as h→ 0. Again γ0(h) · · · γp(h)
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satisfy



γ0 + · · · γp = y0

γ0[r0(hλ)] + · · · γp[r0(hλ)] = y,
...

γ0[r0(hλ)]P + · · · γp[rp(hλ)]p = yp

(52)

the initial values y0 · · · yp depend on h and satisfy

η(h) ≡ max
0≤n≤p

|eλxn − yn| → as h→ 0

⇒ lim
h→0

yn = 1 0 ≤ n ≤ p

The coefficient γ0 → 1 as h→ 0 (look at solution of linear system (52) and see
that by Cramer’s the denominator converges to Vandermonde determinant
for r0(0) = 1, r1(0), . . . r3(0) nonzero and distinct roots. Same for numerator.

∴ {yn} → eλx as h→ 0 on [x0, b].

2

Corollary. If (42) consistent. Then convergent if and only if stable.

Proof. Follows directly from above theorems.

2

Relative and Weak Stability:

Consider {
y′ = λy
y(0) = 1

and the general solution yn =

p∑

j=0

γj[rj(hλ)]n, n ≥ 0.

The convergence theorem states that parasitic solutions of γj[rj(hλ)]n → 0
as h → 0. However, we use finite h and want, for any xn, for them to be
small compared to γ0[r0(hλ)]n.

need ∴ ⇒ |rj(hλ)| ≤ |r0(hλ)| j = 1, 2, . . . p(53)

for h sufficiently small.
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This leads to concept of “relative stability.”

A method is “relatively stable” if the characteristic roots rj(hλ) satisfy (53)
for all sufficiently small |λh|. And a method satisfies the “strong root condi-
tion” if

|rj(0)| < 1 for j = 1, 2, . . . p

Easy to check and it implies “relative stability.”

Remark. Relative Stability does not imply the strong root condition (al-
though they’re equivalent for most methods). If multi-step method is stable
but not relatively stable, it is “weakly stable.”

Example: Using the bf midpoint method defined as yn+1 = yn−1+2hf(xn, yn), n ≥
1 to solve

and

{
Y ′ = λY
Y (0) = 1

with exact solution
Y (x) = eλx.

Take yn = rn n ≥ 0

rn+1 = rn−1 + 2hλrn ⇒ r2 = 1 + 2hλr

r0 = hλ+
√

1 + h2λ2 r1 = hλ−
√

1 + h2λ2

so general solution

(54) yn = β0r
n
0 + β1r

n
1 , n ≥ 0

{
β0 + β1 = y0

β0r0 + β1r1 = y1

∴ β0 =
y1 − r1y0

r0 − r1
β1 =

y0r0 − y1

r0 − r1
, generally

using initial condition as above ⇒ y0 = 1, y1 = eλh

β0 =
eλh − r1

2
√

1 + h2λ2
= 1 +O(h2λ2)

β1 =
r0 − eλh

2
√

1 + λ2h2
= O(h3λ3)
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β0 → 1 β1 → 0 as h → 0 ∴ β0r
n
0 in (54) should correspond to true solution

eλxn , since β1r
n
1 → 0 as h→ 0. In fact

rn0 = eλxn [1 +O(h)]

Now, assume λ is real and positive (for illustration)

then r0 > |r1| > 0

thus rn1 increases less rapidly than rn0 so β0r
n
0 will dominate. Now, assume λ

is real and negative

then 0 < r0 < 1 r1 < −1 h > 0

∴ β1r
n
1 will dominate β0r

n
0 as n → ∞, for fixed h, no matter how small h.

The β0r
n
0 → 0 as n → ∞, whereas the term β1r

n
1 increases, alternating sign

as n→∞.

The β1r
n
1 is the “parasitic” solution (a creation of the numerical method) ⇒

Midpoint method is “weakly stable” . . . the parasitic solution will eventually
make the solution diverge from the solution.

In summary, the midpoint method is weakly stable according to (53) since

r0(hλ) = 1 + hλ+O(h2) r1(hλ) = −1 + hλ+O(h2)

for λ < 0.

Example: Try AB and AM. They have same characteristic polynomial when
h = 0:

ρ(r) = rp+1 − rp

The roots are r0 = 1, rj = 0 j = 1, . . . p ∴ Strong Root condition is satisfied
and Adams methods are relatively stable.

2

0.1.11 Backward Differentiation Formulas (BDF’s)

Multi-step methods built with superior stability properties.
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Construction: Pp(x) ≡ polynomial of degree ≤ p that interpolates Y (x) at
xn+1, xn, . . . xn−p+1 for some p ≥ 1:

(55) Pp(x) =

p−1∑

j=−1

Y (xn−j)ℓj,n(x)

where

ℓj,n(x) =

n−p+1∏

j=n+1

j 6=1

x− xj
xi − xj

n+ 1 ≤ i ≤ n− p+ 1

Lagrange interpolation basis functions, for nodes xn+1 . . . xn−p+1 differentiate

(56) P ′
p(xn+1) ≈ Y ′(xn+1) = f(xn+1, Y (xn+1))

Combine (55) and (56):

Yn+1 ≈
p−1∑

j=0

αjY (xn−j) + hβf(xn+1, Yn+1)

∴ p-step method is

yn+1 =

p−1∑

j=0

αjyn−j + hβf(xn+1, yn+1)

Can find coefficients αj, β for given p in many numerical analysis books.

Truncation error for the method:

Tn(Y ) = − β

p+ 1
hp+1Y (p+1)(ξn)xn−p+1 ≤ ξn ≤ xn+1

Exercise: derive truncation formula (hint, review Lagrange Interpolation).

Example:

p = 1 β = 1 α0 = 1 get Implicit Euler

p = 2 yn+2 −
4

3
yn+1 +

1

3
yn =

2

3
hf(xn+2Yn+2)

p = 3 yn+3 −
18

11
yn+2 +

9

11
yn+1 −

2

11
yn =

6

11
hf(xn+3, yn+3)

2
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0.1.12 Stability and Stiff Equations

Perhaps the best way to motivate this concept is by looking at an example
(taken from Iserles). Let

A =




−20 10 0 · · · 0
10 −20 +10 :
0 · · · :
: · :
: · · · :
: · · · :
: 10 −20 10 0
: 10 −20 10
0 · · · 0 10 −20




We solve

Y′ = AY

Y(0) = I,(57)

using AB2. To be specific, Figure (7) shows the Sup-norm of the approximate
solution y(t), for M = 10, the size of the M ×M matrix A, for two and
slightly different values of h, the step size. The dashed line corresponds
to the approximate solution with h = 2.702703 × 10−2 and the solid to
h = 2.73972 × 10−2. You can download the matlab code that was used in
this example. Notice from the plots that the approximates are drastically
different even though the difference in the values of h is small. Why? after
all, the difference in h is so small. If you were to try AB of 3rd order you’d
find it makes matters worse! If we had tried a BDF (low p, more on this
later), the solution and the approximation would be reasonably close. 2

Recall our analysis of Euler on the problem y′ = λy. One is tempted to
conclude that a low-order method has poor approximating properties, for
certain λ, h, as compared to a high order method.

But it is not the order of the method that caused the problem in the above
example. Recall our analysis of trapezoidal scheme on y′ = λy → 2nd order
method that showed the correct asymptotic behavior IRRESPECTIVE of h!

In summary: we need to understand the distinction between the “order”
of the method and its stability, e.g. The trapezoidal has superior stability

72



0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

xxxxx TIME STEP=2.702703e−02

−−−− TIME STEP=2.739726e−02

Figure 7: Sup-norm of approximate solution y(tn) of (57) with M = 10 using
AB2. The dashed line corresponds to h = 2.702703× 10−2 and the solid line
to h = 2.73972× 10−2
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properties: in fact, we would find it to be stable independent of h! This does
not mean that we can choose h arbitrarily and expect the approximation
and the solution to be close to each other: convergent and stable are not the
same as accurate. However, any scheme which is consistent, convergent, and
stable will be accurate if we take h sufficiently small.

2

What’s a stiff equation? No precise definition exists. Operationally,

{
Y ′ = f(x, Y )
Y (x0) = Y0

is “STIFF” if its numerical solution by some methods requires (perhaps in
a portion of an interval) a significant depression of the step size in order to
avoid instabilities.

Example: One way to assess qualitatively the stiffness of a system of equa-
tions is this: Take A a matrix of constant coefficients




Y′ = AY
Y(x0) = Y0

with eigenvalues of A ≡ Λj

stiff if and only if
Re(λj) < 0 and very large · · ·
or ratio between largest and smallest eigenvalue is huge!

Sometimes we see “Stiffness-ratio” as a way to “quantify” stiffness and is
taken as ratio of the modules of largest to smallest eigenvalue of linearized
system.

What’s big? 103 and above, perhaps.

Example: Kinetic Reactions have coupled systems with stiffness ratio ≈ 1017

Example: Bigbang (Einstein’s General Theory) stiffness ratio of ≈ 1031.

The Linear Stability domain and A-Stability

Remark

There are serious limitations to linear stability theory. Nevertheless, it is
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very useful . . . and EASY!

Take Y ′ = λY λ in C(complex)
Y (0) = 1

solution Y = eλt and lim
t→∞

Y (t) = 0 if Re(λ) < 0.

We say that the “linear stability domain D” of a numerical scheme is the
{hλ} set such that lim

n→∞
yn = 0 with h > 0 and λ ∈ C.

i.e. the set for which we obtain the correct asymptotic behavior.

Note: Re(λ) > 0 case used to be of limited interest . . . solution grows rapidly
and becomes very large. However, there’s renewed interest in nonlinear prob-
lems . . . there’s a counterpart of λ called the “Liapunov” exponent . . . (see
Dynamical Systems text).

Example: Approximate the solution Y (t) of

(58) Y ′ = λY Y (0) = 1,

where t ≥ 0, and λ is complex. Using Forward Euler, it is clear that the
approximate solution is yn = (1 + hλ)n where n = 0, 1 · · ·

∴ {yn}with n = 0, 1 . . . is a geometric sequence and lim
n→∞

yn = 0 if and only

if |1 + hλ| < 1

∴ DEuler
= {z ∈ C : |1 + z| < 1} z ≡ hλ

A domain which is wholy inscribed in a circle in the complex plane of z ,
centered at (−1, 0), where the first entry corresponds to the real part of z.

Example: To illustrate the vector equation case, consider Forward Euler,
applied to

(59)

{
Y′ = ΛY
Y (0) = Y0

Λ =

[ −100 1

0 − 1

10

]

a simple vector case. Then

y1 = y0 + hΛy0 = (1 + hΛ)y0 y2 = y1 + hΛy1 = (1 + hΛ)2y0
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∴ yn = (1 + hΛ)ny0 n = 0, 1 · · ·
Perform a spectral factorization

Λ = VDV−1 V =
[ 1 1

0 999
10

]
D =

[ −100 0

0 − 1

10

]

∴ Y(t) = eΛx = VexDV−1Y0, x ≥ 0

exD =
[ e−100x 0

0 e−
x
10 .

]

Y(t) = e−100xS1 + e−
x
10S2 x ≥ 0

Euler approximate solution is thus

yn = V(I + hD)nV−1y0 n = 0, 1 · · ·

with

(I + hD)n =

[
(1− 100h)n 0

0
(
1− 1

10
h
)n
]

(60) ∴ yn = (1− 100h)nS1 +

(
1− 1

10
h

)n
S2

2

Consider now the d× d generalization of the problem considered in (59):

D = diag{λ1, · · ·λ3}and S1,S2, · · ·Sd ∈ C depending onY0.

yn =
d∑

k=1

(1 + hλk)
nSk n = 0, 1 · · ·

so the requirement that |1 + bΛk| < 1, for k = 1, 2 · · · d means that all
hλ1, hλ2, · · ·hλk lie in DEuler

.

Remark In practice, sufficient to look at stiffest component: THE STEP
SIZE IS CONTROLLED BY STIFFEST COMPONENT.
The above example assumed there was a full set of eigenvectors. Generally,
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can use Jordan Factorization (since every d× d possesses such factorization)
to find full set to illustrate, assume Λ is d× d. Let Λ = WΛW−1

detW 6= 0

so that Λ =




Λ1 0 · · · 0 0
0 Λ2 0 · · · 0

0 0
. . . 0 0

0 · · · · · · ΛS−1 0
0 · · · 0 0 ΛS




there λ1, λ2λ3 · · · ∈ σ(A) and the kth Jordan-block is

Λk =




λk 1 0 · · · 0

0 λk 1
. . . :

:
. . . . . . . . . 0

:
. . . 0 λk 1

0 0 0 0 λk



k = 1, 2, · · · s.

2

Remark

Example: Trapezoidal (bearing in mind that Y0 = 1 at x = 0)

yn =

(
1 + 1

2
hλ

1− 1
2
hλ

)n
n = 0, 1

DTRAP =

{
z ∈ C :

∣∣∣∣
1 + 1

2
z

1− 1
2
z

∣∣∣∣ < 1

}

Thus the region of stability is the whole left-hand plane of z such that
Re(z) < 0. In fact, since it is a useful concept, let’s denote

C
− ≡ {z ∈ C : Re(z) < 0}

Since trap mimics asymptotic stability of linear ODE without limitations on
h, we define this as “A-STABLE.”
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Re(z)

Im(z)

Figure 8: r̂3/0. Stability region is bounded region.

define: Method is “A-Stable” if

C
− ⊆ D

Hence, A-stable methods enable you to choose the step-size h based on ac-
curacy considerations, rather than on stability considerations.

Exercise: Verify that the Theta Method is A-Stable if and only if 1
2
≤ θ ≤ 1.

2

definition: Let r̂1/1 ≡ 1+ 1

2
z

1− 1

2
z
. We say that this ratio of polynomials in z is the

Padé approximant r̂1/1. Padé approximants will be discussed shortly.

Example: Take the Padé approximant r̂3/0 ≡ 1 + z + 1
2
z2 + 1

6
z3. If it was

obtained from a numerical scheme for solving the initial value problem (58),
the corresponding scheme would have stability in the bounded region of Fig-
ure 8. This scheme would be an example of a non A-stable method. Why?
Example: Take the Padé approximant

r̂1/2 ≡
1 + 1

3
z

1− 2
3
z + 1

6
z2
.
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Re(z)

Im(z)

Figure 9: r̂1/2. Stability region is outside of bounded region.

If it was obtained from a numerical scheme for solving the initial value prob-
lem (58), the corresponding scheme would have a stability region outside
the bounded region of Figure 9. This scheme would be an example of an
A-stable method. Why? As you can see, the subscript of r̂ corresponds to the
order of the polynomial in the numerator and the denominator, respectively.

A-Stability of Runge-Kutta

Take

(61)





ξj = yn +
ν∑

i=1

aj,if(xn + cih, ξi) j = 1, 2, · · · , ν

yn+1 = yn + h
ν∑

j=1

bjf(xn + cjh, ξj)

convention:
ν∑

i=1

aj,i = cj j = 1, 2, · · · ν

Example:
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2-Stage IRK

ξ1 = yn +
1

4
h

[
f(xn, ξ1)− f

(
xn +

2

3
h, ξ2

)]

xi2 = yn +
1

12
h

[
3f(xn, ξ1) + 5f

(
xn +

2

3
h, ξ2

)]

yn+1 = yn +
1

4
h

[
f(xn, ξ1) + ξf(xn +

2

3
h, ξ2)

]

Tableaux:

0 1
4
−1

4
2
3

1
4

5
12

1
4

3
4

2

Take (61) and use to approximate

{
y′ = λy
y(0) = 1

get ξj = yn + hλ
ν∑

i=1

aj,iξi j = 1, 2, · · · , ν

let ξ = (ξ1, ξ2, · · · ξν)Tand 1 = (1, 1, · · · 1)T ∈ Rν

then ξ = 1yn + hλAξ

∴ ξ = (I − hλA)−11yn

(62) ∴ yn+1 = yn + h
ν∑

j=1

bjξj = [1 + hλbT (I − hλA)−1]yn n = 0, 1 · · ·

Lemma

For every Runge-Kutta ∃ r̂ ∈ Pν/ν such that

(63) yn[r(hλ)]n n = 0, 1 · · ·

Moreover, for ERK ⇒ r̂ ∈ P
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Here, Pα/β are rational functions p̂/q̂ such that p̂ ∈ Pα, q̂ ∈ Pβ.

Proof (outline)

So r̂(z) = 1 + zbT (I − zA)−11 z ∈ C.

by (62) (63)

Need to show that r̂(z) is a rational function. Use

(I − zA)−1 =
adj(I − zA)

det(I − zA)

where adj is the “adjunct” of the matrix. The rest of proof omitted: must
show that indeed, ν(z) ∈ Pν/ν

2

Remark

A is strictly lower triangular if ERK ∴ det (I−zA) ≡ 1 and r̂ is a polynomial,
rather than a ratio of polynomials, ∴

Lemma The application of a numerical method to y′ = λy that produces

yn = [r(hλ)]n n = 0, 1 · · ·

where r is an arbitrary function. Then

D = {z ∈ C : |r(z)| < 1|}

Proof

Follows from definition of D.

Corollary No ERK method is A-Stable

Proof

r(z) is a polynomial and r(0) = 1.

2

Figure (10) shows some stability boundaries for ERK’s of different orders.
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Figure 10: Stability regions for ERK of different orders.

Exercise: Verify that the 2 stage IRK above gives r̂ 1

2
(z) pictured in Figure 9.

Remark

What is r̂α/β? These are Padé approximants, to the exponential ez:

r̂1/0 = 1 + z r̂1/1 =
1 + 1

2
z

1− 1
2
z

r̂1/2(z) =
1 + 1

3
z

1− 2
3
z + 1

6
z2

Padé approximants will come up later when we study the stability of schemes
for the solution of PDE’s.

Example

Let’s close this section with a couple of schemes we’ve seen before: Implicit
Euler and Trapezoidal. In this example we verify the stability of these two
methods, but in addition, point out a very interesting and sometimes very
important aspect that distinguishes Euler and Trap.

Implicit Euler yn+1 = yn + hf(xn+1, yn+1) n ≥ 0 apply to y′ = λy. Assume
Re(λ) < 0.

yn =

[
1

1− hλ

]n
y0 n ≥ 0
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then yn → 0 as xn → ∞ if and only if |1 − hλ|−1 < 1, true for all hλ ∴

A-Stable.

In fact for large magnitude Re(λ) < 0, yn → 0 as xn → ∞ very quickly
as it does for the exact solution Y (x) = eλx

THIS IS GOOD.

Compare this to A-STABLE Trap: yn =

[
1 + hλ

2

1− hλ
2

]n
y0

if |Re(λ)| large, fraction inside [ ] ≈ −1 and yn decreases very slowly!!

Remark If the problem is stiff, functional iteration, or fixed point methods
will work (but must check) in the trapezoidal case. However, Use Newton
rather than fixed point methods when solving Implicit Euler · · · Why? For

stiff problems require

∣∣∣∣h
∂f

∂y
< 1

∣∣∣∣ forcing h to be tiny.

A-Stability of Multistep Methods

Multi-step methods such as Backward Differentiation Formulas (BDF’s), AB,
AM, and are considered next. What are BDF’s? This is a family of multi-
step implicit methods that have very good stability properties. Detailed
consideration of them is beyond the scope of the course. They are classified
by the number of stages p in the method. The p = 1 BDF, i.e. BDF1 is
Implicit Euler. The next two are:

yn+2 =
4

3
yn+1 −

1

3
yn +

2

3
f(xn+2, yn+2)

yn+3 =
18

11
yn+2 −

9

11
yn+1 +

2

11
yn +

6

11
f(xn+3, yn+3)

corresponding to BDF2 and BDF3, respectively.

Theorem

The root condition is satisfied if and only if 1 ≤ p ≤ 6. Only then is the
BDF schemes are convergent. 2

Only p = 1, and p = 2, i.e. BDF1 and BDF2, are A-Stable. The BDF2 is
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Re(z)

Im(z)

stable unstable

Re(z)

Im(z)

stable unstable

Figure 11: Approximate stability regions for BDF2, and BDF3. Stable re-
gions are bounded to the right by the dashed curve.

actually very useful in problems that require stability when the eigenvalues
λ of the matrix A, in the vector problem y′ = Ay has a slight Re(λ) > 0, but
only slightly. This happens quite often in all sorts of applications, when for
example, we want to stabilize a weakly unstable problem (see 0.5).

In fact one can show that the stability region for the BDF2 and BDF3 are
approximately as pictured in Figure 11. In the figures, the stable region is
bounded to the right by the dashed curve.

Theorem

(The Dahlquist-Second Barrier): The highest order of an A-Stable Multistep
Method is 2.

Proof

See Lambert ’91 Num. Methods for ODE’s, Wiley.

2

Remark Suppose we want high-order and A-Stable? We’ll have to resort to
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IRK. . . yuk!!

Linear Stability of Adams-Bashforth and Adams-Moulton Schemes

In Figure (12), which is taken from “Spectral Methods” book from Hussaini,
et al, we reproduce the stability boundaries for several AB and AM methods...

Remember that a p-step multistep method requires p values, including the
initial condition, i.e. the “initial values.” Since we only have 1 of these values,
we must recast the stability issue in terms that are much stronger than
is practically-necessary: We require linear stability FOR ALL POSSIBLE
VALUES OF y0, y1, · · · yp−1:

Write multi-step method as

(64)
P∑

m=0

amyn+m = hλ
P∑

m=0

bmyn+m n = 0, 1 · · ·

when applied to y′ = λy.

(64) written as

(65)
P∑

m=0

(am − hλbm)yn+m = 0 n = 0, 1 · · ·

Get linear difference equation (see notes on linear-diff equations for a brush-
up on topic).

To solve (64), form characteristic polynomial

c(w) ≡
P∑

m=0

gmw
m

g(m) = am − hλbm

Let w1, w2, · · ·wq be the zeros of c(w) with multiplicatives k1, k2, k3, · · · kq
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Figure 12: Stability Boundaries for several AM and AB schemes
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where

q∑

i=1

ki = p. Then the general solution of (64)

(66) yn =

q∑

i=1

(
ki−1∑

j=0

ai,jn
j

)
wni n = 0, 1 · · ·

The constants are p ai,j uniquely determined by the p starting values y0, y1, · · · yp−1.

Lemma (A-Stability for Multi-Step): Suppose the zeros (as a function
of w) of

c(z, w) =
P∑

m=0

(am − bmz)wm z ∈ C z = λh

are w1(z), w2(z) · · · , wq(z)(z) and their multiplicatives k1(z), k2(z) · · · kq(z)(z)
respectively. Then the multi-step method (1) is A-stable if and only if

(67) |wi(z)| < 1 i = 1, 2 · · · q(z) ∀z ∈ C

Proof

Examining (65) we see that yn behavior is determined by magnitude of
wi(hλ) i = 1, 2 · · · , q(hλ). If they all reside inside complex unit disk then
their powers decay faster than any polynomial in n, thus, yn → 0

Hence (67) is sufficient for A-Stability.

On the other hand, if |wi(hλ)| ≥ 1, say, then there exist starting values such
that a1,0 6= 0 ∴ it is impossible for yn → 0 as xn →∞. We deduce that (66)
is necessary for A-Stability.

2

Example

Is the AB yn+1 = yn +
hλ

2
[3yn− yn−1] solution for Y ′ = λY A-Stable?

, n ≥ 1
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The characteristic equation

r2 − (1 +
3

2
hλ)r +

1

2
hλ = 0

r2 − (1 +
3

2
z)r +

1

2
z = 0

The roots are: r0,1 = 1
2

{
1 + 3

2
z ±

√
1 + z + 9

4
z2
}

Region of absolute stability are such that |r0(z)| < 1, |r1(z) < 1 so −1 < z <
0. Thus not A-Stable.

General Comments comparing AB and BM :

1) Find that for both, region of absolute stability becomes smaller the
higher the order.

2) For a given order, region of absolute stability is larger for AM.

3) Size of region usually acceptable from the point of view of practicality.

4) The Adams family is very easy to adapt to variable order (DEABM is
a popular fortran code that does this).

5) No Adams scheme is A-Stable. Also, in general, the higher the order,
the smaller the region of stability, but with higher order you get to
include more of the right hand side of the eigenvalue plane. Hence, for
mildly stiff problems and slightly unstable problems one can use a high
order Adams, provided h is small enough.

0.2 BOUNDARY VALUE PROBLEMS (BVP)

We’re not going to do justice to this topic, unfortunately. It is a vast subject,
so we want to present some essential material that will give you a starting
point for more advanced and related material. We will only concentrate on
second order problems, for specificity.
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Consider

(68)





Y ′′ = f(x, Y, Y ′) x0 ≤ x ≤ b
Y (x0) = α
Y (b) = β

Some Methods for the Numerical Solution are





Shooting Methods
Finite Difference
Galerkin
Collocation
Rayleigh-Ritz

We will study shooting and finite difference methods and limit ourselves to
cursory comments on the other methods listed above.

First, we need a little bit of theory (see See Boyce and DiPrima book, for a
nice presentation of this material..

Theorem (Existence and Uniqueness of Solutions)

Suppose f in equation (68) is continuous on D =
{

(x, Y, Y ′) |x0 ≤ x ≤

b,−∞ < Y, Y ′ <∞
}

and that
∂f

∂Y
and

∂f

∂y′
are also continuous on D.

If

a)
∂f

∂Y
(x, Y, Y ′) > 0 ∀ (x, Y, Y ′) ∈ D and

b)

∣∣∣∣
∂f

∂Y ′ (x, Y, Y
′)

∣∣∣∣ ≤M , constant ∀ (x, Y, Y ′) ∈ D

⇒ BVP (68) has a unique solution

2

Proof: Omitted. See Boyce and DiPrima book, for a nice presentation of
this material. for details.
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Corollary: If the following linear BVP

Y ′′ = p(x)Y ′ + q(x)Y + Y (x) , x0 ≤ x ≤ b, Y (x0) = α, Y (b) = β

satisfies

i) p(x), q(x), r(x) continuous on [x0, b]

ii) q(x) > 0 on [a, b] ⇒ this BVP has a unique solution

2

Relation Between Homogenous and Inhomogeneous Problem

In order to understand the Shooting Method 0.2 it is important that we
refresh your memory on the following issue: Take

(69) Y ′′ = p(x)Y ′ + g(x)Y + r(x)

the inhomogeneous problem, with

Y (x0) = α

Y (b) = β

under assumptions that ensure uniqueness will generate a solution yP (x),
which we’ll call the “particular solution.”

Let w(x) ≡ y(x)− yP (x) where

w′′ = p(x)w′ + q(x)w

w(x0) = α− y(x0) ≡ α′

w(b) = β − yp(b) ≡ β′(70)

This is a homogeneous ODE with possibly inhomogeneous boundary con-
ditions. ∴ Can find a solution to inhomogeneous problem (69) by solving
(70)

So, now look at homogeneous IVP:
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Y ′′ = p(x)Y ′ + q(x)Y

Y (x0) = α

Y ′(x0) = s(71)

Call its solution Y = Y (s;x). If p and q are continuous on [x0, b] ⇒ there’s
a unique solution to (71).

But recall that every solution of (69) or (71) must be expressible as a linear
combination of 2 independent solutions y1(x) and y2(x) which satisfy, say,

(72)
Y1(x0) = 1 Y ′

1(x0) = 0
Y2(x0) = 0 Y ′

2(x0) = 1

(these ensure linear independence of Y1 and Y2(x) and is not the only choice
. . . cf. Ch 11 of Boyce and DiPrima) so Y (s;x) = αY1(x) + sY2(x) is the
unique solution that satisfies Y (x0) = α, Y ′(x0) = s

Now take s such that

(73) Y (s; b) ≡ αY1(b) + sY2(b) = β

then Y (x) = Y (s;x) is a solution of BVP (69). Solving for

s =
β − αY1(b)

Y2(b)
,

ok provided Y2(b) 6= 0.

Suppose Y2(b) = 0 ⇒ there may not be a solution to (69): if Y2(b) = 0 a
solution would exist only if

β = αY1(b) (see (73))

but it would not be unique since in this case

Y (s;x) of (71) is a solution for arbitrary s.
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∴ There are 2 mutually exclusive cases: either a unique solution exists or
else the “homogeneous problem,” which is

(74)





Y ′′ = p(x)Y ′ + q(x)Y
Y (x) = 0
Y (b) = 0,

has a nontrivial solution sY2(x), i.e. if Y2(x) is nontrivial solution then Y2(x)
times any constant is also a nontrivial solution to (74) ∴ there’s a whole
family of solutions (infinite family).

∴ either (69) has a unique solution OR ELSE (74) has a non-trivial solution.
This is “The Alternative Principle.” 2

The Shooting Method

Linear Case:

Take

(75) Y ′′ = p(x)Y ′ + q(x)r x0 ≤ x ≤ b Y (x0) = α, Y ′(x0) = 0

and

(76) Y ′′ = p(x)Y ′ + q(x)Y x0 ≤ x ≤ b Y (x0) = 0, Y ′(x0) = 1.

If p, q, r continuous and q > 0 on [x0, b] then the Lipschitz condition exists
for cast as a system ⇒ both (75) and (76) have unique solutions.

Take Y1(x) solution of (75) and Y2(x) solution of (76)

(77) ⇒ Y (x) = Y1(x) +
β − Y1(b)

Y2(b)
Y2(x),

(provided Y2(b) 6= 0. can be checked to be unique solution of

(78) BV P ≡





Y ′′ = p(x)Y ′ + q(x)Y + r(x) x0 ≤ x ≤ b
Y (x0) = α
Y (b) = β
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x_0 b

α

β

y

x

y_1(x)

y_2(x)

y(x)

Figure 13: Graphical construction of the solution.

Remark: Note that if Y2 is solution of Y ′′ = p(x)Y ′ + q(x)Y and Y2(x0) =
Y2(b) = 0⇒ Y2 = 0.

Summary:

So the shooting-method strategy amounts to the following: Replace (78) by
2 IVP (75) and (76). Use appropriate method to solve (75) and (76) and
piece solution as per (77). Figure (13) shows graphically the construction of
the solution Y (x) in terms of Y1(x) and Y2(x).

ALGORIHM (from Burden and Faires p 582)

1. Set h = (b− x0)/N
u1,0 = α
u2,0 = α
v1,0 = 0
v2,0 = 1

2. for i = 0 . . . N − 1

93






Use ERK4 (or some other suitable IVP scheme)
to solve for
u1,i+1, u2,i+1, v1,i+1, v2,i+1

w1,0 = α

w2,0 =
β − u1,N

v1,N

output (x0;w1,0w2,0)

here w1,0 is an approximation to Y (x0) and w2,0 an approximation to Y ′(x0)

for i = 1, · · ·N
x = x0 + ih

w1 = u1,i + w2,0v1,i

w2 = u2,i + w2,0v2,i

output (x,w1, w2)

w2 is an approximation to Y ′(xi)

and w1 is an approximation toY (xi)

END

2

The Shooting Method, Nonlinear Case

Similar to linear case, but cannot piece solution as linear combination of 2
IVP. Instead, we create a sequence of IVP’s of the form

(79)





y′′ = f(x, y, y′)
x0 ≤ x ≤ b
y(x0) = α
y′(x0) = t
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x_0 b

α

β

y

x

y(x)

y(x,t_0)

y(x,t_2)

y(x,t_1)y(b,t_1)

y(b,t_2)

y(b,t_0)

Figure 14: Nonlinear shooting method

t is a PARAMETER, chosen so that t = tk, such that

lim
k→∞

y(b, tk) = y(b) = β

1st shot: result of





y′′ = f(x, y, y′) x0 ≤ x ≤ b
y(x0) = α
y(x0) = t0

If y(b, t0) not close enough to β, we choose another “elevation” t1, and check
to see if close enough. If not, choose the next “elevation” t2, · · · until our
“shots” get close to β. The situation is depicted in Figure (14), which clearly
shows why the method bears its name.

How to choose tk? If y(x, t) is approx solution to (79) (The IVP) then we
need to determine t such that

y(b, t)− β = 0

A nonlinear equation that can be solved using an efficient root-finding method
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For example, using secant:

tk = tk−1 −
(y(b, tk−1)− β)(tk−1 − tk−2)

y(b, tk−1)− y(b, tk−2)
k = 2, 3, . . .

A better and more elegant method uses the Newton method integrated into
the IVP sequence. See Burden and Faires for algorithm page 587.

The shooting method, when it works, is usually quite fast. It is easy to im-
plement. Its good qualities are offset by possible instabilities. An alternative
method, such as finite difference method, to be shown next.

Finite Difference Technique

LINEAR CASE

Take





Y ′′ = p(x)Y ′ + q(x)Y + r(x) x0 ≤ x ≤ b
Y (x0) = α
Y (b) = β

RECIPE

(Equally spaced grid case)

⇒ [x0, b] and divide into N + 1 intervals
xi = x0 + ih i = 0, 1, · · ·N + 1

h =
(b− x0)

N

Approximate Y ′′ and Y ′ by difference quotients

Approximate Yn by yn

Generate an N ×N matrix problem for the unknowns yn

The boundary data is at x0, at which point y0 = α, and at xN+1, at which
point yN+1 = β.

Example In this instance we’ll use low order center-differenced approxima-
tions to the derivatives. Assume that Y ∈ C4[xi+0xi+1]. To get the finite
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difference expressions to the derivatives, expand

Y (xi ± h) = Y (xi±1) = Y (xi)± hY ′(xi) +
h2

2
Y ′′(xi)±

h3

6
Y ′′′(xi) +

h4

24
Y ′′′′(ξi)(80)

for some ξ±i in (xi, xi±1)

Add Y (xi + h) and Y (xi − h) expressions and get

Y ′′(xi) =
1

h2
[Y (xi+1)− 2Y (xi) + Y (xi−1)]−

h2

24

[
Y ′′′′(ξ+

i ) + Y ′′′′(ξ−i
]

Use the Intermediate Value Theorem and (80) to deduce

Y ′′(xi) =
1

h2
[Y (xi+1)− 2Y (xi) + Y (xi−1)]−

h2

24
Y ′′′′(ξi)

with
ξi ∈ (xi−1, xi+1)

So Y ′′(xi) ≈
1

h2
[Yi+1 − 2Yi + Yi−1]. This is a “centered-difference” aproxi-

mation to Y ′′(xi) and is an O(h2)

Exercise Show that

Y ′(xi) ≈
1

2h
[Yi+1 − Yi−1] is O(h2) approximation to Y ′ at x = xi. The

truncation error is
h2

6
Y ′′(ηi)

2

So, now we project the equation onto our grid, with yi ≡ y(xi), we get
(81)



yi+1 − 2yi + yi−1

h2
= p(xi)

[
yi+1 − yi−1

2h

]
+ q(xi)yi + r(xi) i = 1, 2 · · ·N

y0 = α yN+1 = β

The truncation error is −h
2

12
[2p(xi)y

′′′(ηi)− y′′′′(ξi)] = O(h2). So (81) has

the form of the linear system

(82) Ay = b
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with

A =




2 + h2q1 −1 +
h

2
p1 0 0 0

−1− h

2
p2 2 + h2q2 −1 +

h

2
p2 0 0

0
. . . . . . . . . 0

0 0 −1− h

2
pN−1 2 + h2qN−1 −1 +

h

2
pN−1

0 0 0 −1− h

2
pN 2 + h2qN




and

y =



yi
:
yN


b =




−h2r1 +
(
1 + h

2
p1

)
α

−h2r2
:
−h2rN−1

−h2rN +
(
1− h

2
pN
)
β




Theorem

Suppose p, q, r are continuous on [xo, b]. If q(x) ≥ 0 on [x0, b] ⇒ (82)
has a unique solution provided h < 2/L where L = max

x0≤x≤b
|p(x)|. Proof

(exercise). Look at conditions for the solution of the associated problem
(82). 2 Remark: How could we get higher than
O(h2) truncation error? Could use higher order approximation to derivatives,
but this leads to more computing (nothing to be scared about these days).
However, the more important problem is that it leads to a mathematical
issue to resolve: Suppose you use O(h4) approximation to the derivatives:
we’ll require knowledge of field at yi−2, yi−1, yi, yi+1yi+2. In the interior this is
not a problem...our matrix A will simply have a larger bandwidth. However,
at the end-points we have some figuring out to do: at i = 1, we would need
y−1, y0, y1, y2. The node y0 is given by boundary conditions, y1 and y2 are
interior points, so these are ok, but we don’t have an equation or condition
to determine y1. At i = N , we have the same sort of problem but there the
undertermined node is at yN+2. As you might guess, using even a higher
order scheme will generate even more undetermined boundary points. So,
how do we deal with this problem? If we want to get high order accuracy we
need to determine these unknowns.

Strategies:
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• Use a right-sided finite difference approximation to derivatives at i = 0
and a left-sided finite difference approximation to derivatives at i =
N + 1. This seldom works. What you need to do is construct the
associated linear algebra problem, (82), and check to see if the system
indeed has a solution...what happens in many instances is that you get
an underdetermined system.

• Use a lower order discretization and commensurably smaller step sizes
at the ends and match the solution there to the interior so that the
overall order of the scheme is retained. This is a rather clumsy strat-
egy and sometimes generates very fragile code. It will only work in
certain instances. In fact, in some instances, for example, in boundary
layer problems, a sudden change in grid size will generate spurious and
usually noisy approximations at the end points.

• Use the physics of problem to generate conditions for all undetermined
yi’s to the left and the right of i = 1 and at i = N , repectively. This is
a very sensible approach, but is not always possible.

• Use Richardson extrapolation (e.g. stick to the second-order approxi-
mation and you get higher order but you’ll have to compute the problem
twice). This is also a very sensible approach and is viable, provided
you have precise estimates for the truncation error (not a difficult thing
to calculate). Remember, though, that as a rule you don’t want to use
extrapolation more than a couple of times, since it may become too
computationally intensive, as compared to simply using a higher or-
der scheme, or you may encounter rounding-errors. See Richardson
Extrapolation.

• Combine the last two strategies.

Unequal Spacing: One other possibility for dealing with the above problem is
to use variable-sized meshes. This is not only used to get around the problem
of undetermined quantities but is also generally applicable to boundary value
problems in which multiple scales in the approximate solution are expected
to arise. This is typically used to solve problems which have localized values
of xi for which a lot of changes in the dependent variables are seen, but not
much is happening in other areas. This is a topic of current research and
is beyond the scope of presentation: in general, one hope to obtain higher
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resolution in certain places where y varies a lot and go with low resolution in
places where y does not change all that much. The overall aim is to reduce
the computational expense of the method, as compared to over-resolving
the whole domain, but this must be done with care. Perhaps the most
research in this area is done by the finite element methods community and
if you are interested, you could start by just finding out what finite element
methods are. Then look into adaptive mesh refinement schemes and domain
decomposition methods.

NONLINEAR CASE:

Take

(83)





Y ′′ = f(x, Y, Y ′) x0 ≤ x ≤ b
Y (x0) = α
Y (b) = β

In principle, it’s simple. Same deal as above, but now we get a nonlinear
system of algebraic equations. How to solve? Use Newton’s method or
fixed point iteration. But before launching into either of these two solution
techniques, make sure that you study the system you’re solving: does the
(83) have a solution? Is it unique? Will a fixed point method be applicable?
Again, fixed point methods will not require the calculation of an analytical
or approximate Jacobian.

The easy ones are those with a unique solution, i.e. when





(i) f, fY , f
′
Y are all continuous on

D = {(x, Y, Y ′)|(x0 ≤ x ≤ b),−∞ < Y, Y ′ <∞}
(ii) fY (x, y, y′) ≥ δ > 0 on D for some δ > 0

(iii) k and L exist (constants), such that
k = max

D
|fY (x, Y, Y ′)| L = max

D
|fY ′(x, Y, Y ′)|

(84)

2

Recipe: Using O(h2) discretization for Y , its derivatives, and the equation
coefficients, just as in linear case.

1. Form associated nonlinear algebraic system.
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2. Solve system using fixed point methods, or better yet, express the re-
sulting nonlinear system of algebraic equations as

S(yℓ+1) = 0

with yℓ=




yℓ1
:
.
yℓN


, known. The superscript ℓ is the iteration counter.

then S(yℓ+1) = S(yℓ) + J(yℓ)δyℓ + O(δy2) = 0 assume O(δy2) small, then
the approximation

(85) J(yℓ)δyℓ = −S(yℓ)

where J(Yℓ) is the Jacobian of the nonlinear algebraic problem, evaluated
at yℓ, may be suitable. And δyℓ is the correction on yℓ, so that

yℓ+1 = yℓ + δyℓ

Problem (85) is a linear algebraic problem, in fact, it can be shown to be
tridiagonal.

Implementation comments: don’t forget to put a “max iterations exceeded”
condition in your code. Also, since scheme is O(h2), use O(h2) stopping
criteria for the Newton iteration. You can use fixed point method in the
iteration, but convergence is linear and has restrictions on the type of problem
for which it is applicable (see Fixed Point iteration. Since a good intial guess
is required, make it go through (x0, α) and (b, β) and in addition, satisfy
appropriate conditions as per (83) on previous page.

Want to use a higher order truncation scheme? Don’t neglect considering
a low-order method, coupled with Richardson extrapolation, before getting
into something more involved. Otherwise, use a higher-order scheme, but
make sure that you don’t leave any boundary points undertermined.

2

101



0.2.1 The Elliptic Problem with Discontinuities

We consider here

(86) − d

dx
(a(x)

du(x)

dx
) + c(x)u(x) = f(x) a ≤ x ≤ b,

with boundary conditions

α1u(0)β1u
′(0) = γ1, α1, β1 ≥ 0, α1 + β1 > 0

α2u(1)β2u
′(1) = γ2, α2, β2 ≥ 0, α2 + β2 > 0.(87)

This is the general elliptic problem in 1 dimension. We already have covered
how one could solve this equation using simple finite difference equations,
if a(x) > 0 is smooth and continuous. Try setting up the linear algebraic
problem using naive finite differences when a(x) is piece-wise continuous and
has jumps, taking c(x) = 0 for simplicity. What happens?

Here we present what is sometimes called the “box method”. Take a, c, f
piecewise continuous in a ≤ x ≤ b, with a(x) > 0, c(x) ≥ 0 for all a ≤ x ≤ b.

If a(x) is discontinuous at some discrete places xj, then we exploit the fact

that u(x) and the flux a(x)du(x)
dx

is continuous at these points and everywhere
else. Take one of these discontinuity locations, we enforce

(88) a(x+
j )
du+

j

dx
= a(x−j )

du−j (x)

dx
,

where ± refers to the right/left side of the discontinuity. First, let’s create
a mesh a = x0 < x1, ... < xI+1 = b, and the mesh spacing is hi = xi+1 − xi.
Integrating (86) over [xi, xi + hi/2] = [xi, xi+1/2] yields

(89) −ai+1/2

dui+1/2

dx
+a(x+

i )
du(x+

i )

dx
+

∫ xi+1/2

xi

c(x)u(x)dx =

∫ xi+1/2

xi

f(x)dx.

Integrating over [xi−1/2, xi] yields

(90) ai−1/2

dui−1/2

dx
− a(x−i )

du(x−i )

dx
+

∫ xi

xi−1/2

c(x)u(x)dx =

∫ xi

xi−1/2

f(x)dx.
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Adding (89) and (90), employing (88) gives

(91) −ai+1/2

dui+1/2

dx
+ ai−1/2

dui−1/2

dx
+

∫ xi+1/2

xi−1/2

c(x)dx =

∫ xi+1/2

xi−1/2

f(x)dx

which is exact for the interval [xi−1/2, xi+1/2].

0.2.2 Discrete approximation for interior mesh points

Center-differencing derivatives and midpoint rule over half intervals of (91)
leads to
(92)

−ai+1/2
ui+1 − ui

h
+ai−1/2

ui − ui−1

h
+ui

1

2
(c−i hi−1+c

+
i hi) =

1

2
(f−
i hi−1+f

+
i hi)+ =

1

2
(hi−1+hi)τi.

If a, c, f, u are smooth τi = (hi), where hi = max(hi, hi−1), if hi 6= hi−1.

τi = (h
2

i ), where hi = max(hi, hi−1), if hi = hi−1, which follows from a Taylor
series expansion of ui−1, ui+1 and ci = c−i = c+i , fi = f−

i = f+
i , expanded

about ui.

0.2.3 Discrete Approximation at Boundary Points

Consider (89):

(93) −ai+1/2

dui+1/2

dx
+a(x+

i )
du(x+

i )

dx
+

∫ xi+1/2

xi

c(x)u(x)dx =

∫ xi+1/2

xi

f(x)dx,

in the interval [x0, x2]: At x0 = a we have:

α1u(a)− β1u
′(a) = γ1, so,

α1u(a)− γ1

β1

= u′(a) β1 6= 0

u(a) =
γ1

α1

β1 = 0.(94)
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At the other end point

α2u(b)− β2u
′(b) = γ2, so,

α2u(b)− γ2

β2

= u′(b) β2 6= 0

u(b) =
γ2

α2

β2 = 0.(95)

Dirichlet Case β1 = 0: In this case, u0 = u(0) is known, and the discrete
equations at u0 and u1 are:

u0 = γ1/α1,

which is exact, or (92) at i = 1, O(h̄) orO(h̄2).

Neumann (or mixed) Case β1 6= 0: In this case u′(a) is known, but u(0) = u0

is unknown, and (89) is employed for u(0):

(96) −a1/2
u1 − u0

h0

+ a+
0

α1u0 − γ1

β1

+ c+0
u0h0

2
=
f+

0 h0

2
+

1

2
h0τ0,

or (92) at i = 1, O(h̄) orO(h̄2).

The discrete equations are straightforward to write down in linear-algebraic
form, the resulting matrix is symmetric, tridiagonal. This is the case for
both the Dirichlet and Neumann cases. The equations at the first, last and
interior grid points are:

u0 =
γ1

α1

uI+1 =
γ2

α2

−ai+1/2
ui+1 − ui

hi
+ ai−1/2

ui − ui−1

hi−1

+ ui
c−i hi−1 + c+i hi

2
=

f−
i hi−1 + f+

i hi
2

.

For the Neumann or Mixed case, the first, last, and interior points are:

−a1/2
u1 − u0

h0

+ a+
0

α1u0 − γ1

β1

+ c+0
u0h0

2
=

f+
0 h0

2
.

−a−I+1

γ2 − α2uI+1

β2

+ aI+1/2
uI+1 − uI

hI
+ c−I+1

uI+1hI
2

=
f+
I+1hI

2
.

−ai+1/2
ui+1 − ui

hi
+ ai−1/2

ui − ui−1

hi−1

+ ui
c−i hi−1 + c+i hi

2
=

f−
i hi−1 + f+

i hi
2

.
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2

0.2.4 The Method of Weighted Residuals (MWR)

Consider the well–posed differential equation

Lu(x) = f(x) , x ∈ Ω ⊆ R
n

with boundary conditions on ∂Ω. We will approximate the solution u(x) as

v(x) =
N∑

j=1

cjφj(x)

where {φj}Nj=1 span the “trial space”. Hence, we denote v(x) as the “trial
functions”. The goal in MWR is the determination of the N scalars {cj}Nj=1.

This is done in MWR by minimizing

r(x) ≡ Lv(x0 − f(x)

where r(x) is the “residual”. We do so by attemping to find the coefficients
that drive the weighted average

∫

Ω

r(x)wi(x) dx = 0 ∀i,

where {wi}Mi=1 are the “test functions” or weights. The number of weight
functions and N are related as shown below.

A good choice of basis functions are the Lagrange poynomials. To be specific,
let n = 1 and {xj}Nj=1 be the set of N “nodes” on some intreval [x0, xf ] ≡ Ω,
they are distinct but not necessarily evenly spaced. Here x0 and xf are the
boundary points ∂Ω.

An (N − 1)th degree polynomial associalted with xj, j = 1, . . . , N

ℓj(x) =
N∏

i=1,i6=j

x− xi
xj − xi
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forms a basis of SN , the finite-dimensional linear space. As we saw in 475A

vi ≡ v(xi) =
N∑

j=1

cjℓj(xi) = ciℓi(x) = ci,

since ℓj(xi) = δij. So we have

v(x) =
N∑

j=1

vjφj(x)

where the φj are Lagrange polynomials.

These ℓj(x) are nonzero over entire Ω, except at a finite number of node
points. Further, ℓj(x) ∈ C∞(Ω). However, we may want to choose piecewise
polynomials rather than global polynimials. This is beneficial for parallel
computing where we want to minimze communication between processors.

The following sets of piecewise defined polynomials in C0(Ω) are simple and
thus quite popular.

• piecewise linear

φj(x) =





x−xj−1

xj−xj−1
xj−1 ≤ x ≤ xj

xj+1−xj
xj+1−xj xj ≤ x ≤ xj+1

0 otherwise

Download the piecewise linear polynomial interpolation matlab script.

• piecewise quadratic and still C0(Ω)

j odd

φj(x) =





(x−xj−1)(x−xj−2)

(xj−xj−1)(xj−xj−2)
xj−2 ≤ x ≤ xj

(xj+1−x)(xj+2−x)
(xj+1−xj)(xj+2−xj) xj ≤ x ≤ xj+2

0 otherwise

j even

φj(x) =

{
(x−xj−1)(xj+1−x)

(xj−xj−1)(xj+1−xj) xj−1 ≤ x ≤ xj+1

0 otherwise
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Download the piecewise quadratic interpolation matlab script. Com-
pare to the piecewise linear and the cubic interpolation cases (see be-
low).

• for C1(Ω) functions use piecewise Hermite polynimoals

v(x) =
N∑

j=1

vjφoj(x) +
dvj
dx

φ1j(x) .

Here vj is the approximation u at xj,
dvj
dx

is the approximation of du
dx

at xj and φ0j and φ1j are piecewise Hermite polynomials. Here are the
cubic Hermite polynomials:

φ0j(x) =





(x−xj−1)
2[2(xj−x)+(xj−xj−1]

(xj−xj−1)3
xj−1 ≤ x ≤ xj

(x−xj+1)
2[2(x−xj)+(xj+1−xj)]
(xj+1−xj)3 xj ≤ x ≤ xj+1

0 otherwise

φ1j(x) =





(x−xj−1)
2(x−xj)

(xj−xj−1)2
xj−1 ≤ x ≤ xj

(x−xj+1)
2(x−xj)

(xj+1−xj)2 xj ≤ x ≤ xj+1

0 otherwise

with the properties

φ0j(xi) = δij φ0j(xi) = 0

dφ0j

dx
(xi) = 0

dφ1j

dx
(xi) = δij .

Download the piecewise cubic Hermite polynomial interpolation matlab script.
Verify the properties of the interpolants and compare the results of the cubic
interpolation to the quadratic and linear cases.

Recall that MWR goal is to minimize r(x) by forcing it to zero in a weighted
average sense over the domain Ω. The most popular variants of MWR are

1. Subdomain Method
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2. Collocation

3. Galerkin and Petrov–Galerkin

We will only present the first 2 by example.

0.2.5 Subdomain Method

We minimize the residual r(x) by forcing it to zero in a weighted average
sense as follows: minimize r(x) over Ω by forcing the arithmetic average of
r(x) taken over discrete intervals of Ω to be zero.

Choose weights

wi(x) =

{
1 x ∈ Ωi

0 x 6= Ωi

where {Ωi}Mi=1 are monimtersecting subregions within Ω whose union covers
Ω. For piecewise linear on nodes {xi}Ni=1 a good choice of Ωi is

(xi −
1

2
(xi − xi−1)) < x < (xi +

1

2
(xi+1 − xi))

. In this case

wi(x) =

{
1 xi − ∇xi

2
< x < xi +

∆xi
2

0 otherwise

where ∇xi = xi − xi−1 and ∆xi = xi+1 − xi. When xi is near a boundary
node the Ωi is taken as only the region residing within Ω.

Example:

Lu =

(
d2

dx2
+ k2

)
u = 0 0 < x < 1

u(0) = 1 u(1) = 0

k is a given real number. The exact solution to the problem is
u(x) = cos(kx)− cot(k) sin(kx).
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Let us use piecewise linear functions and the subdomain method. Choose
x1 = 0, x2 = 0.5 and x3 = 1.0, here ∆x = 0.5.

We want to have
∫ 1

0

r(x)w1 dx = 0,

∫ 1

0

r(x)w2 dx = 0,

∫ 1

0

r(x)w3 dx = 0.

Since v1 = v(0) = 1 and v3 = v(1) = 0 and f = 0. So we have only to ensure
that ∫ 1

0

r(x)w2 dx =

∫ 1

0

(
d2v

dx2
+ k2v

)
w2(x) dx = 0

or
3∑

j=1

vj

∫ 0.75

0.25

(
d2φj
dx2

+ k2φj

)
dx = 0

Let’s write

dφ2

dx
=

1

∆x
H(x− 0)− 2

∆x
H(x− 0.5) +

1

∆x
H(x− 1)

where H(x− xp) is the Heaviside function

H(x− xp) =

{
1 x ≥ xp

0 x < xp

and
d

dx
H(x− xp) = δ(x− xp)

where δ(x− xp) is the Dirac delta function. This function is zero for x 6= xp
and unbounded at x = xp such that we have

∫ ∞

−∞
δ(x− xp) dx = 1

∫ ∞

−∞
δ(x− xp)F (x) dx = F (xp)
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where F (x) is a well–defined function. It follows that

d2φj
dx2

=
1

∆x
δ(x− 0)− 2

∆x
δ(x− 0.5) +

1

∆x
δ(x− 1)

and

v1

∫ 0.75

0.25

[
1

∆x
δ(x− 0.5) + k2φ1(x)

]
dx+v2

∫ 0.75

0.25

[
− 2

∆x
δ(x− 0.5) + k2φ2(x)

]
dx

+ v3

∫ 0.75

0.25

[
1

∆x
δ(x− 0.5) + k2φ3(x)

]
dx = 0

Since δx = 0.5

v1

[
2 +

k2

16

]
+ v2

[
−4 +

3k2

8

]
+ v3

[
2 +

k2

16

]
= 0

Since v1 = 1 and v3 = 0 we find the following system of equations




1 0 0
32+k2

16
−32+3k2

8
32+k2

16

0 0 1





v1

v2

v3


 =




1
0
0




Solving gives (v1, v2, v3) = (1, 32+k2

64+6k2 , 0).

Compare this to (u1, u2, u3) = (1, cos(0.5k)− cot(k) sin(0.5k), 0).

0.2.6 Collocation Method:

Minimize residual by forcing it to pass through zero at a finite number of
discrete points within Ω. So here

wi(x) = δ(x− xci), xci ∈ Ω

where xci is the i–th collocation point. The choice of collocation points is an
important consideration in the method. We aim to have

∫

Ω

r(x)wi(x) dx =

∫

Ω

r(x)δ(x− xci) dx = r(xci) = 0
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In other words, at each collocation point the trial functions are required to
satisfy the differential equation exactly. The number of collocation points is
related to the number of cj.

In general for an M -th order equation: choose polynomials of degree (2M −
1) with CM−1(Ω) continuity. m collocation points are chosen within each
element located at the roots of the M–th degree Legendre polynomial over
each element.

Example: Solve

Lu =

(
d2

dx2
+ k2

)
u = 0 0 < x < 1

u(0) = 1 u(1) = 0

Because r(x) involves second order derivatives of trial functions, the trial
space must be at least C1(Ω) for r(x) to remain bounded.

We choose piecewise cubic Hermite polynomials

v(x) =
N∑

j=1

vjφ0j(x) +
dvj
dx

φ1j(x)

Take N = 2. Nodes are located at x = 0 and x = 1. For second order differ-
ential equations with piecewise cubic Hermitian trial space, two collocation
points should be chosen per element. Coupled with two boundary conditions
we get 2N algebraic equations for 2N unknown nodal values. Further, if we
choose the Gauss–Legendre quadrature points we obtain O(∆x4) accuracy.
So the collocation points will be xc1 = (3−

√
3)/6 and xc2 = (3 +

√
3)/6.

r(xc1) =
2∑

j=1

vj
d2φ0j

dx2

∣∣∣∣
x=xc1

+
dvj
dx

d2φ1j

dx2

∣∣∣∣
x=xc1

+ k2

[
2∑

j=1

vj φ0j|x=xc1 +
dvj
dx

φ1j|x=xc1

]
= 0

r(xc2) =
2∑

j=1

vj
d2φ0j

dx2

∣∣∣∣
x=xc2

+
dvj
dx

d2φ1j

dx2

∣∣∣∣
x=xc2

+ k2

[
2∑

j=1

vj φ0j|x=xc2 +
dvj
dx

φ1j|x=xc2

]
= 0
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So the system to solve is




1 0 0 0
−5.657 + 0.998k2 −3.868 + 0.027k2 5.657 + 0.002k2 −1.830− 0.0008k2

5.657 + 0.002k2 1.830 + 0.0008k2 −5.657 + 0.998k2 3.868− 0.027k2

0 0 1 0







v1
dv1
dx

v2
dv2
dx


 =




1
0
0
0




0.2.7 Galerkin Method:

Choose wi(x) = φi(x), the basis of the trial space. If we used a different basis
we have Petrov–Galerkin. So

∫

Ω

r(x)φi(x0 dx = 0

ie we require that r(x) be orthogonal to φi(x).

Example:

Lu =

(
d2

dx2
+ k2

)
u = 0 0 < x < 1

u(0) = 1 u(1) = 0

Again the nodes are x = 0, x = 0.5 and x = 1.

v(x) =
3∑

j=1

vjφj(x)

v1 = 1 and v3 = 0 by boundary conditions. So we only have to work out
things for node 2: ∫ 1

0

(
d2v

dx2
+ k2v

)
φ2(x) dx = 0

or
3∑

j=1

vj

∫ 1

0

(
d2φj
dx2

+ k2φj

)
φ2(x) dx = 0
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However we can rewrite using integration by parts

∫ 1

0

(
d2v

dx2
+ k2v

)
φ2(x) dx =

∫ 1

0

(
− dv

dx

dφ2

dx
+ k2vφ2

)
dx+

dv

dx
φ2

∣∣∣∣
1

0

but φ2 = 0 at x = 0 and x = 1 so the last term is zero.

∫ 1

0

(
− dv

dx

dφ2

dx
+ k2vφ2

)
dx =

3∑

j=1

vj

∫ 1

0

(
− dφj

dx

dφ2

dx
+ k2φjφ2

)
dx

= v1

[
1

∆x
+
k2∆x

6

]
+ v2

[
− 2

∆x
+

2k2∆x

3

]
+ v3

[
1

∆x
+
k2∆x

6

]
= 0

2

Another Comparative Example

Solve the

BV P





Y ′′ = 6t 0 ≤ t ≤ 1
Y (0) = 0
Y (1) = 1

The exact solution is clearly Y (t) = t3. First, let’s solve this problem using:

A) Collocation Technique

seek a function u(t) that satisfies BVP at a discrete set of mesh points in
interval. We choose u(t) as a simple polynomial, capable of satisfying the
boundary conditions and with the regularity suggested by the BVP.

For illustration → only 1 point t = 0.5 and y = 0, at t = 1.

Pick u(t) = x0 + x1t+ x2t
2

so u′(t) = x1 + 2x2t
and u′′(t) = 2x2

So for




Y ′′ = f(t, Y, Y ′) x0 ≤ t = b
Y (a) = α
Y (b) = β
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we require that u = Y at 3 points requires 3 equations:

(97) x0 + x1a+ x2a
2 = α

(98) x0 + x1b+ x0b
2 = β

equations (97) and (98) lead to

x0 = 0

x1 + x2 = 1

and for some t ∈ (a, b) u′′(t) = f(t, u(t), u′(t)).

For us u′′(0.5) = f(0.5, u(0.5), u′(0.5))

Thus

(99) 2x2 = 6(0.5) = 3

So solving (97), (98), (99) get x0 = 0, x1 = −5, x2 = 1.5 thus the approximate
solution is u = −0.5t+ 1.5t2. A comparison to the exact solution appears in
Figure (15)

u(0.5) = −0.5(0.5) + 1.5(0.5)2 = (0.5)2(−1 + 1.5) = (0.5)3

compare to Y (0.5) = (0.5)3 residual is 0

B) FEM/Galerkin Method:

Same BVP and use same 3 mesh points, which now become “knots” in the
piecewise polynomial approximation. Take “hat” basis or elements, which
are shown in Figure (16).

So Y (t) ≈ u(t) = x1φ(t) + x2φ2(t) + x3ψ(t).

Applying the boundary conditions,

u(0) = 0 = x1φ1(0) + x2φ2(0) + x3φ3(0)⇒ x1 = 0

u(1) = 1 = x1φ1(1) + x2φ2(1) + x3φ3(1)⇒ x3 = 1
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Figure 15: Comparison of exact and approximate solution via collocation

Galerkin condition applied at t = 0.5⇒ residual must be orthogonal to space
spanned by the basis functions and hence to each basis individually

Orthogonality condition:

∫ 1

0

(u′′(t)− 6t)φ2(t)dt =
∫ 1

0

u′′φ2(t)dt− 6

∫ 1

0

6φ2(t)dt ≡ 0

integrate by parts:

= −
∫ 1

0

u
︷ ︸︸ ︷
φ′

2(t)dt+ u′(t)φ2(t) |10 −
3

2
= 0

since φ2(0) = φ2(1) = 0 ∴ 2nd term drops out, thus,

= +

∫ 1

0

u′φ′
2(t)dt+

3

2
= 0.
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Figure 16: Hat functions, on the unit interval.
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Figure 17: Comparison of exact and FEM approximate solution

∫ 1

0

(
3∑

i=1

xiφ
′
i(t)

)
φ′

2(t) +
3

2
= 0

3∑

i=α

xi

∫ 1

0

φ′
i(t)φ

′
2(t)dt+

3

2
= 0⇒ x1

(
−1

h

)
+ x2

(
2

h

)
+ x3

(
−1

h

)
+

3

2︸ ︷︷ ︸
($)

= 0,

where h = 1/2. Substituting x1 and x3 gives x2 =
1

8
in ($). We conclude

that the approximation is

u(t) = 0.125φ2(t) + φ3(t)

A comparison of the exact and approximated solution appears in Figure (17).

Remark: One particularly nice feature of Galerkin/FEM and collocation
methods is that the approximation u(t) of the solution Y (t) is defined over
all of the range of t prescribed in the problem statement. This is not true
for the finite difference solution, which only gives you an approximation y of
Y , at specified locations ti defined by the grid.
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We’ll consider more BVP issues in the context of PDE’s, which is in the next
part of the courseII.

2

0.2.8 Variational Formulation

Loosely based on Keller’s “Boundary Value Problems” book.

A few nice properties of this analyses: (1) they force you to work out well-
posedness issues along with some algorithmic issues simultaneously; (2) They
often provide you with information on the space in which solutions exists
and on the proper norm or measure of accuracy within that space; (3) in
some problems, it allows you to analyze problems with weak smoothness
requirements.

Here we’ll only devote attention to a linear second-order differential equation
with Dirichlet boundary conditions. This problem should serve as a good
starting point for such methods as Finite Element and Boundary Element
Methods, for Galerkin and collocation methods. The book by Claes Johnson
on Finite Elements is a nice introduction to the finite element method (FEM);
Canutto, Quarteroni, Hussaini, Zhang book on spectral methods is a good
place to consult for spectral element methods.

Variational formulation for a second-order linear ODE

Assume problem is already in self-adjoint form (all linear 2nd-order ODE’s
can be cast in self-adjoint form):




Ly = r(x) a ≤ x ≤ b
y(a) = α
y(b) = β

(100)

Where

(101) Ly = − d

dx

(
p(x)

dy

dx

)
+ q(x)y
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assume

(102)

{
p ∈ C1[a, b] q and r continuous on [a, b]
p(x) > 0, q(x) > 0 on [a, b]

Under these assumptions (100) has a unique solution.

We can exploit linearity to generate an equivalent problem with homogeneous
boundary conditions:

Let k(x) be a linear function having the same boundary values as y in (100).
Let z = y(x)− k(x). Then




Lz = r(x)− Lk(x)

z(a) = 0
z(b) = 0

(103)

is same type of problem as (100) but with homogeneous boundary conditions.
By the way, this is a very useful trick to turn boundary value problems into
inhomogeneous problem.

So we can solve (100) by solving (103). So we’ll just consider



Ly = r(x) a ≤ x ≤ b
y(a) = 0
y(b) = 0

(104)

Let the linear space C2
0 [a, b] =

{
u ∈ C2[a, b]

∣∣u(a) = u(b) = 0
}
. This defines

the space of solutions.

So we write (104) as

Ly = r, y ∈ C2
0 [a, b].

Note: L : C2[a, b] → C[a, b] is a linear operator. It’s convenient to consider
a slightly larger space:

V0 =

{
v ∈ C[a, b]

∣∣∣∣ v′ is piecewise continuous and bounded on [a, b]

and v(a) = v(b) = 0

}
.
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On V0 we define the inner product

(105) (u, v) ≡
∫ b

a

u(x)v(x)dx ; v, u ∈ V0.

Theorem: L in (101) is symmetric on C2
0 [a, b] relative to the inner product

(105), i.e.
(Lu, v) = (u,Lv) ∀u, v ∈ C2

0 [a, b]

Proof: integration by parts:

(Lu, v) =

∫ b

a

{[−p(x)u′]′ + q(x)u} v(x)dx

= −
(
pu′v

∣∣b
a+

∫ b

a

[p(x)u′(x)v′(x) + q(x)u(x)v(x)]dx

=

∫ b

a

[p(x)u′(x)v′(x) + q(x)u(x), v(x)]dx

Since the last integral is symmetric in u and v, it is also equal to (Lv, u),
which in turn, by symmetry of (·, ·) proves the theorem.

2

The theorem’s setting was on C2
0 [a, b] but also works for V0. It suggests an

alternative inner product:

[u, v] ≡
∫ b

a

[p(x)u′(x)v′(x) + q(x)u(x)v(x)]dx u, v ∈ V0

and the proof of the above theorem shows that

(106) (Lu, v) = [u, v] if u ∈ C2
0 [a, b], v ∈ V0.

In particular, if u = y is a solution of (104) then

(107) [y, v] = (r, v) , ∀v ∈ V0

This is the “weak form” or “variational form” of (104).

Theorem: Let p∗ be such that p(x) ≥ p∗ > 0. Under the assumptions made
on p, q, r in (102), there exists positive constants c1 and c2 such that

(108) c1||u||2∞ ≤ [u, u] ≤ c2||u′||2∞ ∀u ∈ V0.
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Moreover,

c1 =
r∗

b− a, c2 = (b− a)||p||∞ + (b− a)3||q||∞.

Proof: For any u ∈ V0, since u(a) = 0⇒

u(x) =

∫ x

a

u′(t)dt, x ∈ [a, b].

By Schwarz’s inequality

(109) u2(x) ≤
∫ x

a

1 dt

∫ x

a

[u′(t)]2dt ≤ (b− a)
∫ b

a

[u′(t)]2dt, x ∈ [a, b]

therefore

(110) ||u||2∞ ≤ (b− a)
∫ b

a

[u′(t)]2dt ≤ (b− a)2||u′||2∞.

Using (102)

[u, u] =

∫ b

a

{(p(x)[u′(x)]2 + q(x)u2(x)dx} ≥ p∗
∫ b

a

[u′(t)]2dx

≥ p∗

b− a ||u||
2
∞

where the last inequality follows from the left inequality in (110). This proves
the lower bound in (108). The upper bound is found by observing that

[u, u] ≤ (b− c)||p||∞||u′||2∞ + (b− c)||q||∞||u||2∞ ≤ c2||u′||2∞,

where (110) has been used in the last step.

2

Remark: (108) implies uniqueness of solution of (104). In fact,

Ly = r , Ly∗ = r y, y∗ ∈ C2
0 [a, b]

then L(y − y∗) = 0⇒ by (106) and (108):

0 = (L(y − y∗), y − y∗) = [y − y∗, y − y∗] ≥ C, ||y − y∗||2∞
⇒ y = y∗.
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The Extremal Problem

Let

(111) F (u) ≡ [u, u]− 2(r, u) , u ∈ V0

F (u) is a quadratic functional. The extremal property for the solution y of
(104) is stated in the following theorem:

Theorem: Let y be the solution of

Ly = r y ∈ C2
0 [a, b].

Then F (u) > F (y) ∀u ∈ V0 u 6= y.

Proof: By (107) (r, u) = [y, u], so

F (u) = [u, u]− 2(r, u) = [u, u]− 2[y, u] + [y, y]− [y, y]

= [y − u, y − u]− [y, y] > −[y, y]

where strict inequality holds by virtue of (109) and y − u 6= 0. On the other
hand, since [y, y] = (Ly, y) = (r, y), by (106):

F (y) = [y, y]− 2(r, y) = (r, y)− 2(r, y) = −(r, y) = −[y, y]

which combined with the other inequality proves the theorem.

2

This last theorem thus expresses the following extremal property of the so-
lution of

Ly = r y ∈ C2
0 [a, b] :

F (y) = min
u∈V0

F (u)(112)

We view (112) as an extremizing problem for determining y.

How do we find it? We’ll do it on a machine. Thus, we’ll solve (112) ap-
proximately by determining a function us from a finite dimensional subset
S ⊂ V0 that minimizes F (u) on S.
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A useful identity:

(113) [y − u, y − u] = F (u) + [y, y] , u ∈ V0

is satisfied by the solution y which was satisfied in the course of the proof of
the last theorem.

Approximate Solution of Extremal Problem

Let S ⊂ V0 be a finite-dimensional subspace of V0 and dimS = n. Let
u1, u2, · · · , un be a basis for S, so that

(114) u ∈ S → u =
n∑

ν=1

ηνuν ην ∈ R

We approximate y of (112) by uS ∈ S, which satisfies

(115) F (uS) = min
u∈S

F (u).

Methodology:

For any u ∈ S,

F (u) =

[
n∑

ν=1

ηνuν ,

n∑

µ=1

ηµuµ

]
− 2

(
r,

n∑

ν=1

ηνuν

)

=
n∑

v,µ=1

[uν , uµ] ηνηµ − 2
n∑

0=1

(r, uν)ηv

Let

M =




[u1, u1] [u1, u2] · · · [u1, un]
[u2, u1] : · · · [u2, un]
[u3, u1] : · · · :

: : :
[un, u1] [un, u2] · · · [un, un]




this is often called the “Stiffness” matrix.

η =




η1

η2

:
ηn



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the coefficient vector

f =




(r, u1)
(r, u2)

:
(r, un)




the “Load” vector. In terms of these

F (u) = ηTMη − 2fTη , η ∈ R
n

is the matrix form of the functional F .

M is symmetric positive definite, since ηTMη = [u, u] > 0 unless u = 0 (i.e
η = 0).

So the extremal problem (115) takes the form

(116)

{
φ(η) = min

φ(η) ≡ ηTMη − 2fTη, η ∈ Rn

which is an unconstrained minimization on a quadratic in Rn. Since M is
positive definite then (116) has a unique solution η̂ given by the solution of
the linear system

(117) Mη = f

it is easily verified that

(118) φ(η) > φ(η̂)∀η ∈ R
n η 6= η̂;

Indeed, since f = Mη̂

φ(η) = ηTMη − 2fTη = ηTMη − 2η̂Mη

= ηTMη − 2η̂Mη + η̂TMη̂ − η̂TMη

= (η − η̂)TM(η − η̂) + φ(η̂)

where −η̂TMη̂ = −η̂Tf = η̂Tf − 2fT η̂ = η̂TMf̂ − 2fT η̂ = φ(η̂) has been
used in the last step. From this (118) follows.

Thus,

(119) uS =
n∑

ν=1

η̂νuν , where Mη̂ = f.
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In practice, the basis functions of S are chosen to have small support which
results in the matrix M having a small bandwidth.

Next, we establish the optimal approximation property of uS in the norm [·, ·],
i.e.

(120) [y − uS, y − uS] = min
u∈S

[y − u, y − n].

By (113) and (115) the left-hand side = F (uS) + [y, y] = min
u∈S
{F (u) + [y, y]}

which in turn equals the right-hand side of (120).

We can see that (120) leads to the following error estimate:

Theorem:

(121) ||y − uS||∞ ≤
√
c2/c1 ||y′ − u′||∞ ∀u ∈ S

where c1 and c2 are defined as

(122) c1 =
p∗

b− a c2 = (b− a)||p||∞ + (b− a)3||q||∞.

In particular,
||y − uS||∞ ≤

√
c2/c1 inf

u∈S
||y′ − u′||2∞.

Proof:

By (122) and (120) we get

c1||y − uS||2∞ ≤ [y − uS, y − uS] ≤ [y − u, y − u] ≤ c2||y′ − u′||2∞

from which (121) follows. 2

Remark: From above theorem we see that in order to get a good error bound
we have to use an approximation process y ≈ u, u ∈ S which approximates
the first derivative of y as well as possible. Note that this approximation
process is independent of the one yielding uS; its sole purpose is to provide
a good error bound for Us.
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0.2.9 The Finite Element Method FEM

This is a specific Galerkin method, and as such the trial and test spaces are
the same and the aim is to make the residual orthogonal to all elements in
the space. First, some references. A good beginning book is Claes John-
son’s “Numerical Solution of PDE’s” (1987), other books are Phillippe Ciar-
let’s “FEM for Elliptic Problems” (1978) and Brenner and Scott’s “FEM for
PDE’s” (1999). Most of these books emphasize the mathematical aspects.
However, a lot of work has been put on the implementation side, which is a
crucial component of the method and is unfortunately glossed over in these
more mathematical books. Some good references on implementation issues
are: .

As the name implies, finite elements use basis sets that are compactly sup-
ported. There are some nice advantages of FEM:

(1) mathematical- you are forced to think from the outset what function
spaces you are using and in what sense, then, is a computed solution “close”
to the exact solution, i.e. the spaces have built-in norms. A second mathe-
matical aspect is that in casting the problem mathematically, one is forced
to seriously consider whether the partial differential equation, or ordinary
differential equation, is well-posed. That is not to say that you can use the
analysis of Galerkin and the proceed to implement the approximate solution
by some non-Galerkin technique.

(2) computationally - the technique allows us to obtain the solution every-
where in the domain, not just at grid locations. This, in contrast to a spectral
(a special collocation case) or finite-difference technique, where you are ap-
proximating the solution at a finite set of grid locations. That is not to say
that you can circumvent this issue by careful interpolation, but this is al-
ready provided by the Galerkin technique (and more importantly, you know
an error estimate everywhere in the domain). Perhaps the most important
advantage is that the technique lends itself very naturally to tiling very com-
plex domains with elements that fit more naturally than simple uniform or
rectangular lattices. It is thus very popular in boundary value problems
(and eigenvalue problems) that come from very complex structures, such as
bridges, buildings,structural components of vehicles, etc. This has been made
considerably easier to do lately, with the availability of very smart automated
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mesh generation packages (well, in 2d...but things are getting better in 3d),
which take care of the most tedious and difficult part of the implementation
of the method.

Again, here we focus only on elliptic problems with simple boundary condi-
tions.

Dirichlet Model Problem Consider

−div(a gradu) = f, on Ω(x, y)

u = 0, on ∂Ω.(123)

Here Ω ⊆ R2, a, u, f : Ω→ R. We assume that 0 ≤ a ≤ a(x, y) ≤ a. We call
this the Strong Formulation (SF).

A reminder:

gradu ≡ ∂u

∂x
x̂+

∂u

∂y
ŷ,

−div(a gradu) ≡ − ∂

∂x
(a
∂u

∂x
)− ∂

∂y
(a
∂u

∂y
).

Remark: note that when a = 1, we get the standard Poisson Equation
problem we’ve studied before.

Weak Formulation (WF): Find u, vanishing on δΩ, such that
∫

Ω

a gradu · gradv dxdy =

∫

Ω

fv dxdy, ∀ v which vanish on δΩ.(124)

Derivation: Use the divergence theorem (integration by parts in multi-dimensions).
For w and v,

∫

Ω

(divw)v dxdy = −
∫

Ω

w · gradv dxdy +

∫

δΩ

w · n̂ v ds,

where n̂ is the outward normal to Ω

Let w = a gradu yields (124), using v = 0 on δΩ.

More precisely: for the SF we require a(x, y) differentiable, and u twice
differentiable, i.e. a ∈ C1 and u ∈ C2. For the WF we require a integrable
and gradu · gradv integrable.
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A little detour: we remind ourselves that a function space L2(Ω) is com-
prised of the set of functions u for which

∫

Ω

|u|2dΩ <∞.

Example: Take the function u = xβ and ask for what values of β is u an
element of L2 over the whole real line. If x and β are real,

∫ ∞

−∞
x2βdx <∞

if β > −1/2.

The Sobolev Space is a function space defined by the integrability of its ele-
ments. The Sobolev space H1(Ω) is defined as

H1(Ω) =
{
u ∈ L2(Ω)| ∂xiu ∈ L2(Ω)

}

i.e. the function and all of its first derivatives are L2(Ω). So, looking at
spaces, L2 ⊃ H1 ⊃ C2 ⊃ C1. Another space, which we will make use of:

H1
0 (Ω) =

{
u ∈ H1(Ω)| u = 0 on δΩ

}

Theorem: If u ∈ C2 and u satisfies the SF then u satisfies the WF. The
proof is above.

Theorem: The WF has a unique solution.

The Variational Problem (V): Find u ∈ H1
0 (Ω) such that

E(u) = min
v∈H1

0

E(v),

where

E(v) =
1

2

∫

Ω

a|grad v|2 dΩ−
∫

Ω

f v dΩ,

so that the functional E : H1
0 → R.

Theorem u satisfies the WF if and only if u satisfies the variational problem.
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Proof: suppose u satisfies the WF. Let’s evaluate

E(v) = E(u+ (v − u)) =
1

2

∫
a|gradu+ grad (v − u)|2 −

∫
f(u+ (v − u)).

Note that the integral sign assumes the integration is over the whole domain
Ω. Expanding the first integral

E(v) = E(u) +
1

2

∫
a|grad(v − u)|2 +

∫
agradu · grad (v − u)−

∫
f(v − u).

The last two terms are zero since WF holds. Then

E(v) = E(u) +
1

2

∫
a|grad (v − u)|2 ≥ E(u)

which implies the VF. 2

Remark: For non-self-adjoint problems, can have WF but no VF. Note,
however, that any linear second order SF problem can be put in self adjoint
form (see Sturm-Liouville theory).

The problem
−div · (agradu) + b · gradu+ cu = f

with zero Dirichlet boundary condtions has a WF but does not have a VF
unless b is zero.

Exercise Let

b(u, v) =

∫
[a gradu · grad v + b · (gradu) v + cuv]

Let E(w) = 1
2
b(w,w) − F (w). Use w = u + tv, i.e. thinking of tv as a

perturbation from u. Find the stationary condition for E about t = 0. What
can you conclude from this calculation?

2

Theorem: If u satisfies the VF, then u satisfies the WF.

Proof: Choose any v ∈ H1
0 , and consider a real quantity t and ρ : R → R,

defined as

ρ(t) = E(u+ tv) =
1

2

∫
a|gradu+ tgradv|2 −

∫
f(u+ tv)
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if ρ(0) = min ρ(t), the ρ′(0) = 0.

0 = ρ′(0) =

∫
gradu · grad v −

∫
f v,

which is the WF.

In what follows we will define

b(u, v) ≡
∫
agradu · gradv

F (v) ≡
∫
fv,

so that E(u) = 1
2
b(u, u)− F (u).

The numerical approximation of the VF problem is called the Rayleigh-Ritz

Method and it can be summarized as follows: Choose a subspace Sh ∈ H1
0 ,

where Sh is finite dimensional subspace. Then, finding the uh ∈ Sh that
minimizes E(v) yields an approximation to uh ≈ u, if Sh is “sufficiently
large.” This could be called the VFh problem.

The numerical approximation of the WF problem can be done using Galerkin
techniques. Briefly, use a finite dimensional set of basis for Sh. Supposing
dimSh = N , then, every function v in Sh can be written as

v =
N∑

i=1

αiφi.

where φ are the bases. Substituting in WF gives

b(uh, v) = F (v)

or

b(
N∑

i=1

αiφi, φj) = F (φj) i, j = 1, 2, . . . N

which is thus

N∑

i=1

αib(φi, φj) = F (φj) i, j = 1, 2, . . . N.
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b(φi, φj) with i, j = 1, 2, . . . N is a matrix, we shall call it the stiffness matrix

M , and F (φj), with j = 1, 2, . . . N is a vector we shall call the load vector F.
So in matrix notation, the task is to solve

Mα = F

for the unknown vector α.

What happens if the problem is instead nonlinear? for example, suppose we
want to solve

−div · (a(x, u)gradu(x)) = f(x) x ∈ Ω

subject to the zero Dirichlet boundary conditions, with the usual assumptions
on a(x, u). In that case we are lead to a nonlinear set of equations, given by

∫
a(x,

∑

j

αjφj)gradφj · gradφi =

∫
fφi

with i, j = 1, 2, . . . , N . We know how to solve these types of systems using a
root finding algorithm (For Newton’s method, see).

Exercise Set up the WF problem and its Galerkin approximation for

−u′′(x) = f 0 < x < 1,(125)

with boundary conditions u(0) = u(1) = 0. Let Sh = P9, where the basis set
is φi = xi(1 − x), i = 0, 1, . . . 9. Prove that the underlying linear algebraic
problem has a stiffness matrix that is symmetric and nonsingular.

2

Model Problem with Neumann Boundary Conditions

−div (agradu) = f on Ω(126)

a
∂u

∂n
= 0 on ∂Ω(127)

If u ∈ Hm then the partial derivatives up to order m− 1 are defined on ∂Ω
and are L2 functions there. However, partials of order m cannot be sensibly
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defined on ∂Ω. So to define a space of functions that is H1 such that a∂/∂n
of these functions are zero on the boundary is nonsensical.

Instead, let v ∈ H1.We show that this is a good function space for the trial
functions:

−
∫

Ω

div · (agradu)v =

∫

Ω

agradu · grad v −
∫

∂Ω

(agradu) · n̂v =

∫

Ω

fv

which is ∫

Ω

agradu · grad v −
∫

∂Ω

a
∂u

∂n
=

∫

Ω

fv.

If u solves (127), then the second term on the left hand side is zero. Hence,
the WF of the problem is

∫

Ω

agradu · grad v =

∫

Ω

fv, ∀v ∈ H1.

Remark: we say that a∂u
∂n

= 0 is a natural boundary condition, whereas
u = 0 is an essential boundary condition.

Exercise Set up the WF problem and its Galerkin approximation for

−u′′(x) + au′(x) + bu(x) = f 0 < x < 1,

u′(x) = c0 x = 0

u′(x) = c1 x = 1

(128)

Let Sh ⊂ H1 be the set of N hat piece-wise linear functions defined on the
distinct nodes xi, i = 1, 2, . . . N defined on the interval 0 ≤ x ≤ 1. Note: you
should get that c1 and c2 make contributions to the load vector.

2

An Error Estimate: for the problem posed in (125): take Sh ⊂ H1
0 , then

b(uh, v) = (f, v) ∀v ∈ Sh.

and
b(u, v) = (f, v) ∀v ∈ Sh.
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where

uh =
N∑

i=1

αiφi

where the set {φi}Ni=1 span Sh. Then

b(u− uh, v) = 0 ∀v ∈ Sh.

Theorem For any v ∈ Sh, as above,

||(u− uh)′|| ≤ ||(u− v)′||.

Proof: Let v, uh ∈ Sh, and w = uh − v. Then

||(u− uh)′||2 = b(u− uh, u− uh) + b(u− uh, w)

= b(u− uh, u− uh + w) = b(u− uh, u− v) ≤ ||(u− uh)′||||(u− v)′||

by Cauchy Schwarz. 2

Furthermore, if φi are piecelinear hat functions,

|u− uh| ≤
h2

8
max
y∈Ω
|u′′(y)|

where h is the largest distance between the nodes. This is the same estimate
you would get for the finite difference approximation of the equation using
center difference approximation for the second derivative.

2

Worked Two-Dimensional Example Calculation Here we will work through a
two-dimensional calculation. We will assume that you will be doing all of the
work. We’ll provide you with some answers for what you should get along
the way.

We’ll solve

∇2u = f(x, y) (x, y) ∈ Ω

u(x, y) = α(x, y) (x, y) ∈ ∂Ω1

∂u

∂n(x, y)
= β(x, y) (x, y) ∈ ∂Ω2

133



x

y

Ω

δΩδΩ

δΩ

δΩ1

1

1

2

���
���
���
���

���
���
���
���

��
��
��

��
��
�� ���

���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
�����

��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

x

y

1

2

34

5

6

7

8

Figure 18: (a) Domain for worked example; (b) node and element assignment.

See Figure 18.

We will assume in this example that f = 0, α = 0, and β(θ) = sin 2θ. We
will take the inner radius to be r = 1 and the outer one to be r = 2. Here
x = r cos θ, and y = r sin θ. The Laplacian in polar coordinates, applied to
some function w, reads

1

r

∂

∂r

(
r
∂w

∂r

)
+

1

r2

∂2w

∂θ2
.

We will tile the domain with 8 triangular elements. Each node point in the
figure is numbered.

To label node points we will use a local and a global scheme. A single index
will denote a node in the global scheme as given in the figure. A double
index will denote the local scheme. In this local scheme the node points
are numbered k1, k2, k3 going in counterclockwise direction where k is the
element number. For example, in element V the local nodes 51, 52, 53
correspond to the global nodes 2, 7, 8, respectively. We will use piecewise
bilinear elements. hence our approximation will have C0 global continuity.

Construction of the elements Let

φki(x, y) = γi1 + γi2x+ γi3y

φki(xki, yki) = 1 φki(xkj, ykj) = 0 i 6= j
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Take i = 1

φk1(x1, y1) = γ1
1 + γ1

2x1 + γ1
3y1 = 1

φk1(x2, y2) = γ1
1 + γ1

2x2 + γ1
3y2 = 0

φk1(x3, y3) = γ1
1 + γ1

2x3 + γ1
3y3 = 0

Solving gives

γ1
1 =

x2y3 − x3y2

2A

γ2
1 =

y2 − y3

2A

γ3
1 =

x3 − x2

2A

where

A =
1

2
det

∣∣∣∣∣∣

1 1 1
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣
i.e. the area of the triangle.

The other two basis functions that are nonzero in the k–th element are

φki(x, y) =
1

2A

[
(xk(i+1)yk(i+2)−xk(i+2)yk(i+1)+(yk(i+1)−yk(i+2))x+(xk(i+2)−xk(i+1))y

]

where i = 2, 3 and the indicial operations are taken mod 3 with counter-
clockwise local numbering assumed.

We want an approximation of the solution in the form

(129) v(x, y) =
N∑

j=1

vjφj(x, y)

where N is the number of node points. Again we multiply the given differ-
ential equation by φi and integrate. This way we get

(130)

∫

Ω

∇2vφi(x, y) dx dy =

∫

Ω

fφi(x, y) dx dy

Integration by parts produces

(131)

∫

Ω

∇2vφi(x, y) dx dy =

∫

∂Ω

(∇v · n̂) ds−
∫

Ω

∇v∇φi dx dy
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where n̂ is the outward unit normal on each segment of ∂Ω and n̂ · ∇v = ∂v
∂n

.

Using (129) and (131) we rewrite (130) as follows

(132)

∫

∂Ω

∂v

∂n
φi ds−

N∑

j=1

vj

∫

Ω

∇φj · ∇φi dx dy =

∫

Ω

fφi dx dy

since f = 0, the RHS vanishes. The
∫

Ω

∇φj · ∇φi dx dy

terms give entries into what is commonly called the stiffness matrix M , a
N ×N square matrix. The quantities

∫

∂Ω

∂v

∂n
φi ds−

∫

Ω

fφi dx dy

are called load vector F . So if V = [v1, v2, . . . , vN ]T then (132) is nothing
more than

MV = F

We most efficiently compute the stiffness matrix by using the relation
∫

Ω

=
∑∫

Ωk

where Ωk is the domain of each element. The plan is finding the contributions
for the stiffness matrix from every element and then adding up all these
contributions. So we need to evaluate

∫

Ωe
∇φl · ∇φm dx dy =

∫

Ω

(
∂φl
∇x

∂φm
∇x +

∂φl
∇y

∂φm
∇y

)

l,m = 1, 2, 3. You should be able to show that

∫

Ωe
∇φl · ∇φm dx dy =

=
1

4A

[
(yl+1 − yl+2)(ym+1 − ym+2) + (xl+2 − xl+1)(xm+2 − xm+1)

]

The load vector
∫
∂v/∂n ds can be found as follows: It is easy to see that it

vanishes for all interior nodes because those φi are zero along the boundary
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∂Ω. Let us look at node 2. Assume that ∂v/∂n = 1 and use the fact that φ2

is linear on ∂Ω. Then
∫

∂v

∂n
φ2 ds =

∫ node 2

node 1

1 · φ8 ds+

∫ node 3

node 2

1 · φ8 ds

=

∫ l1−2

0

s

l1−2

ds+

∫ l2−3

0

s

l2−3

ds

=
l1−2

2
+
l2−3

2

where li−j denotes the distance from node i to node j.

To solve the given problem, follow these steps:

1. Find the coordinates of all the node points.

node number coordinates
1 (0, 2)
2 (1.4142, 1.4142)
3 (2, 0)
4 (1, 0)
5 (0.7071, 0.7071)
6 (0, 1)
7 (0.75, 1.299)
8 (1.299, 0.75)

2. Make a table assigning to each element its corresponding node points
in counterclockwise motion.

element number nodes
I 1,7,2
II 1,6,7
III 6,5,7
IV 2,7,8
V 5,8,7
VI 3,2,8
VII 5,4,8
VIII 4,3,8
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3. Find the local stiffness matrices for each element. Use symmetries and
a matlab script to make the task less tedious.

As all stiffness matrices are symmetric only the upperdiagonal part is
given. Element I Element II

0.4116 -0.7897 0.3781
2.1224 -1.3327

0.9546

0.4346 -0.2353 -0.1993
0.7026 -0.4673

0.6667

Element III Element IV

0.4086 -0.2426 -0.1659
0.7563 -0.5136

0.6796

0.7045 -0.3523 -0.3523
0.5311 -0.1789

0.5311

Element V Element VI

0.8646 -0.4323 -0.4323
0.5051 -0.0728

0.5051

0.4116 0.3781 -0.7897
0.9546 -1.3327

2.1224

Element VII Element VIII

0.7563 -0.2426 -0.5136
0.4086 -0.1659

0.6796

0.7026 -0.2353 -0.4673
0.4346 -0.1993

0.6667

4. Add up the element stiffness matrices to obtain the global stiffness ma-
trix.
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0.8462 0.3781 0 0 0 -0.2353 0.989 0
2.6137 0.3781 0 0 0 -1.685 -1.685

0.8462 -0.2353 0 0 0 0.989
1.1112 -0.2426 0 0 -0.6332

2.3772 -0.2426 -0.9459 -0.9549
1.1112 -0.6332 0

4.5059 -0.2517
4.5049

You should try to do this on your own. Download a possible solution
to this computational task by clicking here

e) Find the force vector.

The only contribution comes from the second node. We will integrate
the boundary terms over the arc of the circle. If many points on the
arc are used the difference between integration along the arc to integra-
tion along the triangle edges is small and the integrals are much more
convenient along the arcs. Let us just consider element VI which will
give us F2/2 because of symmetry. Using polar coordinates we have
ds = 2 dθ and we can interpolate φ2 linearly which will gives us

F2

2
=

∫ node 3

node 2

1 · φ2 dθ = 2

∫ π
4

0

(π
4
− θ
)

sin(2θ) dθ

5. Impose the Dirichlet boundary conditons.

All nodes except 2, 7, 8 have zero function value. Therefore the stiffness
matrix reduces to a 3 × 3 matrix and we end up with the following
system of equations:




2.6137 −1.685 −1.685
−1.685 4.5049 −0.2517
−1.685 −0.2517 4.5049






v1

v2

v3


 =




0.5708
0
0




6. Solve the resulting system of equations.

We obtain v1 = 0.4464, v2 = 0.1769, v3 = 0.1769.

7. Compare the results with the exact solution. The exact solution is
u(r, θ) = 4/17(r2 − 1/r2) sin 2θ.
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Our approximation is, not surprisingly, poor. However, only three free nodes
were included in the calculation. More elements are needed for a better
result. 2

2
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Part II

PARTIAL DIFFERENTIAL
EQUATIONS (PDE’s)
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References Used:

Strikwerda “Finite Difference schemes and PDE’S”
Iserles “A first Course in the Numerical Analysis of Differential Equations”
LeVeque “Numerical Methods for Conservation Laws”
Richtmyer and Morton “Difference Methods for IVP”
Hall and Persching “Numerical Analysis of PDE’s”
McCormick: “Tutorial on Multigrid”

Intro books on Spectral and FEM

Orszag and Gottlieb: “Tutorial on spectral methods”,
Cannuto, et al. “Spectral Methods in Fluid Dynamics”
C. Johnson: “Intro to FEM”.
Strang and Fixx: “Intro to FEM”

0.3 INTRODUCTION

0.3.1 Basic Methods for Numerical Approximation of
PDE

1. Finite Difference Techniques (we’ll concentrate on these) ≡ FD

2. Spectral Methods ≡ SM

3. FEM/Galerkin ≡ FEM

CLASSIFICATION OF PDE’S

PDE’s come in all shapes and forms. Each type, you will find, will require
a different numerical approximating method. We will concentrate on three
types of problems, which are ubiquitous in physics and engineering

Type Classification Canonical Example
Hyperbolic Wave equation Ut + AUx = 0
Parabolic heat equation Ut = kUxx
Elliptic Poisson equation ∇2U = f
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We will also consider an equation of mixed type, the “Advection-Diffusion
equation.”

Type Classification: Within our purview the type classification is not a tremen-
dously important concern. Perhaps more useful is to make the association
between the names and the canonical examples. Nevertheless the type name
comes from the classification of linear second-order pde’s. Take u = u(x, y)
and a, b, c, d, e, f real constants. The equation

auxx + buxy + cuyy + dux + euy + fu = g

is

elliptic if b2 − 4ac < 0

parabolic if b2 − 4ac = 0

hyperbolic if b2 − 4ac > 0

The names come from an analogy with conic sections. Consult a PDE book
for more details.

BASIC PROBLEM

Every PDE type equation requires a special or particular strategy of numer-
ical approximation. Traditionally courses on numerical methods for PDE’s
have been organized by method (i.e. FD, SM, FEM, etc.) rather than by
equation type. The reasons have to do with the fact that this relatively young
subject has been taught by researchers who specialize in the methods rather
than in the equation types.

We will follow tradition here: we will cover mostly the FD method of mostly
linear hyperbolic, parabolic, and elliptic equations.

Roughly speaking we
can divide the PDE
families into





Evolutionary (causal or “time” dependent problems
for example the heat equation (Parabolic), the
wave equation (Hyperbolic): IV/BV Problems

Non-Evolutionary BVP, for example Poisson’s
equation (elliptic)

In many physical situations one might also find equations of mixed type, or
problems that couple equations of various types.
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0.4 HYPERBOLIC EQUATIONS

Perhaps the hardest evolutionary PDE problems to approximate are hyper-
bolic. Reasons for this are beyond scope of the course, but you’ll be getting
an appreciation of the difficulty in the homework assignments. Why start
with the most difficult PDE’s? Because they serve as a good venue to illus-
trate some of the basic numberical-analytical concepts. What we will do is
solve some hyperbolic problems and avoid most of the complicated aspects.

In what follows we’ll denote x the spatial variable, which can be the whole
real line or a closed subinterval of the real line. We will denote time as t and
assume t ≥ 0. The dynamic variable is U = U(x, t)

Three arquetypical problems that are Hyperbolic, are

Ut + A(x, U, t)Ux = 0 Advection or One-Way Wave Equation

Utt −
1

c2
Uxx = 0 c = c(x, U) The Wave Equation

Ut + [f(U)]x = 0 A Conservation law. Here f doesn’t depend on Ux, Uxx, etc...

Let’s take a look at the scalar One-way Wave Equation: Take U = U(x, t) ∈
R1

The Simple Advection Equation

(133) Ut + aUx = 0

a, constant
U(x, 0) = U0(x)

has solution U0(x− at), that is,

(134) U(x, t) = U0(x− at)

See Figure 19 for an illustration. Note that the wave travels to the right as
time increases and the shape is retained.

What we glean from solution:

1. requires differentiability of U , but (134) does not, makes sense . . . this
introduces the concept of “weak” solutions (e.g. shocks). Hyperbolic
problems admit solutions with discontinuities .
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u_0(x) u_0(x- a t’)

t=0 t>0 t’>t

u_0(x - a t)

Figure 19: Graphical representation of the solution to the simple advection
or one way wave equation with constant speed a > 0

2. See solution is a copy of U0 except displaced by at (to the right if a > 0,
to the left if a < 0).

3. Solution only depends on characteristic variable ξ = x− at.

Solution to a more general advection equation

(135)

{
Ut + aUx + bU = f(t, x) x ∈ R1, t > 0
U(0, x) = U0(x)

a, b constants
{
τ = t
ξ = x− at ⇒

{
t = τ
x = ξ + aτ

and define Ũ(t, ξ) = U(t, x) (same function in both coordinate systems).

∴

∂Ũ

∂τ
=
∂t

∂τ

∂U

∂t
+
dx

dτ

∂U

∂x
=
∂U

dt
+ a

∂U

dx
= −bU + f(t, ξ + aτ)

⇒ We get an ODE:

∂Ũ

∂τ
= −bU + f(τ, ξ + aτ) which we can solve:

Ũ(t, ξ) = U0(ξ)e
−bτ +

∫ τ

0

f(σ, ξ + aσ)e−b(τ−σ)dσ

∴ U(t, x) = U0(x− at)e−bt +
∫ t

0

f(s, x− a(t− s))e−b(t−s)ds
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What we learn from this solution:

• Solution is found by a change of coordinate system, or more precisely,
a change of reference frame.

• Along special lines in space-time, the function U is an ODE. These
lines are called characteristics. In this instance the lines are straight,
but they are not in general, if the speed a is not constant in space or
time.

• The resulting ODE above shows that if b > 0 that Ũ dissipates and
grows if b < 0. Note that if b and f is the derivative of another function
that we get a conservation law for Ũ , and that Ũ is conserved if f = 0.

Equations with Variable Coefficients Now assume that the speed a = a(x, t).
Then

(136)

{
Ut + a(t, x)Ux = 0
U(0, x) = U0(x)

then

∂Ũ

∂τ
=

∂t

∂τ
Ut +

∂x

∂τ
Ux = 0

= Ut + aUx = 0

∴

dx

dτ
= a(t, x) = a(τ, x)

∴ (136) is equivalent to




dũ

∂τ
= 0 Ũ(0, ξ) = U0(ξ)

dx

dτ
= a(τ, x) x(0) = ξ

Example)
Ut + xUx = 0

U(0, x) =

{
1 0 ≤ x ≤ 1
0 otherwise
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⇒ dŨ

dτ
= 0,

dx

dτ
= x, x(0) = ξ

the second of these can be integrated to give x(t) = ceτ

Thus,

x(0) = ξ = c ∴ x(τ) = ξeτ

∴ ξ = xe−t

∴ ũ = ũ(ξ)

ũ(t, ξ) = u0(ξ)

∴ u(t, x) = ũ(t, ξ) = u0(ξ) = u0(xe
−t)

so we get, for t > 0

U(t, x) =

{
1 if 0 ≤ x ≤ et

0 otherwise.

Quasi-linear (mildly nonlinear) Equations Consider

Ut + UUx = 0

with

U(0, x) ≡ φ(x) =





2 x < 0
2− x 0 ≤ x ≤ 1
1 x > 1

Since the speed a(u) = U(x, t), the characteristics are straight lines emanat-
ing from (ξ, 0) with speed a(φ(ξ)) = φ(ξ). For x < 0 the lines have speed 2.
for x > 1 the lines have speed 1. For x ∈ [0, 1] the lines have speed 2 − x
and these all intersect at x = 2 and t = 1. Thus, solution cannot exist for
t > 1. Actually, it does in what we call weak form. At t = 1 we get wave
breaking or a shock, i.e. the function no longer is single valued. To find the
solution for t < 1 note U(x, t) = 2 for x < 2t and U(x, t) = 1 for x > t + 1.
For 2t < x < t+ 1 we get

x = (2− ξ)t+ ξ

which in turns gives

ξ =
x− 2t

1− t
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Thus the solution is

U(x, t) =
2− x
1− t

for 2t < x < t+ 1, and t < 1.

Remarks: As we see from the above examples hyperbolic problems propagate
signals or information -in the form of waves- with finite speed. An example of
such information is the initial data. The direction in which the signal travels
depends on the sign of the speed: as posed above, and for t > 0, the signal
will travel at speed |a| and to the right if a > 0 (remember that this speed
may depend on x, t, even on U), and to the left if a < 0 (see Figure 19).

Let’s consider a system of hyperbolic equations:
(
U
V

)

t

+

(
a b
b a

)(
U
V

)

x

= 0

0 ≤ x ≤ 1

the eigenvalues or eigenspeeds are a+ b, a− b. Take a, b > 0, constants.

If 0 < b < a⇒ both characteristics travel to right.
0 < a < b⇒ charactertistics travel in opposite direction

The situation is portrayed in Figure 20

Physical problems are often posed on a finite span in x. Assume this span
is of length l. The hyperbolic problems considered above are well posed if
initial data is specified and appropriate boundary conditions used, and all of
these are consistent. Not only is information from the initial data advected
but so is boundary data that is to the left (right) and before if a > 0 (if
a < 0). One of the many difficulties associated with hyperbolic problems is
in fact the issue of boundary conditions. Since we are always computing over
finite domains, they will always require careful consideration. In what follows
of this presentation we will not consider the hard boundary issues....even in
your assignments these will be carefully avoided.

By way of example
Consider

Ut + aUx = 0

0 ≤ x ≤ 1 t > 0
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0

x

t

1 0 1

x

t

0<b<a 0<a<b

a-b

a+b

a+b

a-b

Figure 20: Signal propagation direction, depending on the size of the eigen-
speeds

and

take a > 0

{
U(0, x) = U0(x)
U(t, 0) = g(t)

then solution is

{
U0(x− at) x− at > 0
g(t− a−1x) x− at < 0

Along x− at = 0 there’ll be a jump in the solution if u0(0) 6= g(0).

For a < 0, roles are reversed. See Figure 21 (Convince yourself!)

Periodic Boundary Conditions: in this case we prescribe u(t, x+l) = u(t, x),
where l is length of strip. These can add strong structure to solution.

Finite Difference Schemes

Most of this material comes from Rychtmyer and Morton’s monograph and
Strikwerda’s textbook.
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0

x

t

1

a>0

0 1

x

a<0

t

u_0(x)

g(t)

u_0(x)

d(t)

Figure 21: Data specification for a > 0 and a < 0 case

Take domain (x, t) and define a lattice (xm, tn) = (mh, nk), where m and n
are integers. Typically, n ≥ 0. We limit the presentation to grids which are
uniform in both x and t (see Figure 22).

here

{
h is x grid spacing
k is t grid spacing

Notation: Let Un
m = U(xm, tn) = U(mh, nk) be the value of U on the lattice.

Let unm be an approximation of Un
m on the same lattice location. We’re going

to consider mostly grids with constant grid spacing.

As in the ODE case, the most important properties of any numerical scheme
for the approximation of a PDE (not just hyperbolic ones) are:

• Convergence

• Consistency

• Stability

Definition: Convergence: for one-step schemes approximating a ANY PDE
to be convergent we compare U(x, t) and unm: if U0

m converges to U0(x) as
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t

(x_m,t_n)

m

m+1

m-1

h

k

n-1 n+1n

Figure 22: Space-time Lattice about xm, tn

mh → x then Un
m converges to U(x, t) at (mh, nk) converges to (x, t) as

h, k → 0. As h, k → 0 the approximation gets uniformly closer to exact
solution on the lattice.

Some properties of a scheme that we should be interested in are:

• Order of Accuracy

• Dissipation, Dispersion

• Speed and Efficiency

Of course, this list of properties is not exhaustive and the properties of im-
portance are different for different types of PDE’s.

A fundamental theorem of Finite Difference approximations of PDE’s is the
Lax-Richtmyer Equivalence Theorem

THE LAX-RICHTMYER EQUIVALENCE THEOREM

A consistent finite difference scheme for a PDE for which the initial value
problem is well-posed is convergent if and only if it’s stable.
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Proof: See Chapter 10 Strikwerda’s book.

So while proof of convergence would be a function-analytic exercise, we could
instead check for consistency and stability and get convergence as a bonus.
This is nice since stability and consistency is usually easier to check than
convergence.

What’s consistency?

definition:

Given a PDE of the form PU = f and finite difference scheme Pk,hu = f ,
we say the FD scheme is consistent with the PDE if, for any smooth φ(t, x),

Pφ− Pk1,hφ→ 0 as h, k → 0,

the convergence being pointwise convergence at each grid point.

Basic idea in Finite Difference Methods: replace derivatives by finite
difference approximations. What we obtain is a pointwise approximation on
a grid (no information on points not belonging to the lattice)

For the equation
Ut + aUx = 0

some schemes are

“forward space-forward time”
un+1
m − unm

k
+ a

unm+1 − unm
h

= 0

“forward time-centered space”
un+1
m − unm

k
+ a

unm+1 − unm−1

2h
= 0

“leapfrog”
un+1
m − un−1

m

2k
+ a

unm+1 − unm−1

2h
= 0

“Lax-Friedrichs”
un+1
m − 1

2

(
unm+1 + unm−1

)

k
+ a

unm+1 − unm−1

2h
= 0

and their computational cells are illustrated in the Figure 23.

So unm is an approximation to U(x, t) at x = mh, t = mk.

Assume that U is sufficiently regular and continuous:
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m-1,n m,n
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forward space,forward time forward time, centered space

leap frog Laz Friedrichs

Figure 23: Computational cells for some elementary schemes for the approx-
imation of hyperbolic schemes

take U(xm ± h, t) = U(xm, tn)± h
∂U

∂x
(xm, tn) +

1

2
h2d

2U

dx2
(xm, tn) + · · ·

⇒ U(xm ± h, tn)− U(xm, tn)

h
=
∂U

dx
(xm, tn) +O(h)

⇒ (Um+h, tn)− U(xm − h, tn)
2h

=
∂U

dx
(xm, tn)+) +O(h2)

same procedure leads to finite difference approximation scheme to
∂

∂t
deriva-

tives.

153



Example check convergence of the Lax-Friedrichs scheme:

Pk,hφ =
φn+1
m − 1

2

(
φnm+1 + φnm−1

)

k
+ a

φnm+1 − φnm+1

2h
let φnm ≡ φ(tn, xm) then

φnm±1 = φnm ± hφx +
1

2
φxx ±

h3

6
φxxx +O(h4)

∴

1

2
(φnm+1 + φnm−1) = φnm +

1

2
h2φxx +O(h4)

φnm+1 − φnm−1

2h
= φx +

1

6
h2φxxx +O(h4)

substituting

Pk,hφ = φt + aφx +
1

2
kφtt −

1

2

h2

k
φxx +

1

6
ah2φxxx +O

(
h4 +

h4

k
+ k2

)

so Pk,hφ→ 0 as k, h→ 0, i.e. consistent as long as
h2

k
→ 0

so what happens when using finite h and k? If k is significantly smaller

than h2 then
h2

k
≥ O(1) quantity. Thus, we would effectively be solving the

problem φt + aφx − Lφxx = 0 (due to finite truncation error terms) which is
not what we set out to do in the first place!!

A Fundamental Theorem in FD approximations of Hyperbolic PDE’s is the
Courant-Friedricks-Lewy Condition (CFL), which will be related to
the stability of a scheme.

Stability For the homogeneous problem Ut + aUx = f , i.e. with f = 0 :

definition The IVP for the first order hyperbolic pde Ut + aUx = 0 is well-
posed if for any time T ≥ t0 ∃ CT constant such that any solution U(t, x)
satisfies

∫ ∞

−∞
|U(t, x)|2dx ≤ CT

∫ ∞

−∞
|U(t0, x)|2dx, for t0 ≤ t ≤ T

definition A finite difference scheme Pk,hu
n
m = 0 for a first-order equation is

stable in a stability region D if there’s an integer J such that for any positive
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time T > t0 ∃ CT constant such that

h
∞∑

m=−∞
|unm|2 ≤ CTh

J∑

j=0

∞∑

m=∞
|ujm|2

for t0 ≤ t0 + nk ≤ T with (k, h) ∈ D

J = 0 for 1-step schemes and J > 0 for multistep schemes, with data at first
J + 1 levels.

Example

Show that ∞∑

m=−∞
|vn+1
m |2 ≤ (|α|+ |β|)2

∞∑

m=−∞
|vnm|2 for

and thus the scheme vn+1
m = αvnm + βvnm+1

is stable if (|α|+ |β|) ≤ 1.

2

The Courant-Friedricks-Lewy Condition (CFL)

definition: Explicit FD scheme can be written as

vn+1
m = a finite sum of vn

′

m′ n′ ≤ n

Theorem: For Ut+aUx = 0 with explicit scheme of the form un+1
m = αunm−1 +

βunm + αunm+1 with k/h = λ constant, a necessary and sufficient addition for
stability is the CFL condition

|aiλ| ≤ 1

For systems of equations, where u is vector and α, β, α are matrices, we
require that |aiλ| ≤ 1 for all e’values ai of the matrix a.

Proof: (Heuristic) See Figure 24 Take Scalar Case: Take |aλ| > 1 first: Con-
sider (t, x) = (1, 0). The solution at u(1, 0) depends on value of u0(x) at
either x = a or x = −a (depending on sign of speed “a”). But from finite
difference scheme we have

un0depends on u0
m only for m ≤ n( by the form of the scheme)
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Figure 24: Heuristic proof of theorem, based on the finite time of travel of
information from cell to cell.

Since h = λ−1k ⇒ mh ≤ kλ−1n = λ−1 since k =
1

n
(assumes that tfinal = 1),

∴ un0 depends on x only for |x| ≤ λ−1 < |a|. Thus un0 cannot converge to

u(1, 0) as h → 0 with
h

k
= 1. For |aλ| ≤ 1 things work out (convince

yourself).

2

Theorem: (explicit schemes) There’s no explicit, unconditionally stable,
consistent finite difference schemes for hyperbolic systems of pde’s.

Proof: Omitted. 2

Remark: Unconditionally stable means that we can choose any k and h and
still remain in the region of stability for the particular scheme. In many in-
stances, a physical problem may require that we time-step an approximation
over many many time steps. An explicit scheme is attractive here, because
it is very efficient in storage (and usually easy to code). However, we need to
consider how long a computation is going to actually take in real clock time:
if we are restricted by a very small time step, then it may take a very long
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time to solve a problem. An alternative is to go to a higher order explicit
scheme (but this usually means more communication which is of concern in
parallel computing) and this buys us a little longer time steps. However, we
might consider a low order implicit scheme which might buy us significantly
bigger time steps (but usually a lot more communication). A recent popular
alternative are the “Semi-Lagrangian Methods”.

Example

un+1
m − unm

k
+ a

un+1 − un+1
m−1

h
= 0

Implicit Case computational cell

(1 + aλ)un+1
m = unm + aλun+1

m−1 λ =
k

h

square both sides

(1 + aλ)2|un+1
m |2 ≤ |unm|2 + 2aλ|unm|un+1

m−1|+ a2λ2|un+1
m−1|2

≤ (1 + aλ)|unm|2 + aλ(1 + aλ)|un+1
m−1|2

Taking sums over all m:

(1 + aλ)2

∞∑

m=−∞
|un+1
m |2 ≤ (1 + aλ)

∞∑

m=−∞
|unm|2 + aλ(1 + aλ)

∞∑

m=∞
|un+1
m |2

∴

∞∑

m=−∞
|un+1
m |2 ≤

∞∑

m=∞
|unm|2 ∴ stable for all λ with a > 0.

Analysis of Finite Difference Schemes

Reminder on Fourier Analysis on R

1. Continuous Case

Fourier Transform Pair





û(ω) =
1√
2π

∫ ∞

−∞
e−iωxu(x)dx

u(x) =
1√
2π

∫ ∞

−∞
eiωxû(ω)dω
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2. on a grid of integers Z or hZ = {hm : m ∈ Z}





û(ξ) = 1√
2π

∞∑

m=−∞
e−imhξum for ξ ∈ [−π, π]

u(−π) = u(π), periodic

um =
1√
2π

∫ π

−π
eimξû(ξ)dξ

Sometimes more convenient to express as

û(ξ) =
1√
2π

∞∑

m=−∞
e−imhξvmh ξ ∈ [−π/h, π/h]

um =
1√
2π

∫ π
h

−π
h

eimuξû(ξ)dξ

definition ||u||2 =

√∫ ∞

−∞
||u(x)|2dx, is the L2-norm.

Parseval’s Theorem states that

∫ ∞

−∞
|u(x)|2dx =

∫ ∞

−∞
|û(ω)|2dω

and for the grid functions:

||û||2h =

∫ π/h

−π/h
|û(ξ)|2dξ =

∞∑

−∞
|um|2h = ||u||2h

Von-Neumann Analysis of Finite Difference Schemes

Use of Fourier methods in the analysis of finite difference schemes. Fourier
methods for the analysis of finite difference schemes are very useful due
to their simplicity. They are applicable on all linear problems and some-
what applicable for nonlinear problems. Briefly, the idea is as follows: the
finite-dimensional approximation unm on the lattice (mh, nk) of the function
u(mh, nk) is decomposed into a superposition of normalized sines and cosines
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with wave numbers ξ in the range
−π
h

to
π

h
. Thus, each sine/cosine wave is

of the form
û(ξ)eixmξ

where û(ξ) is the complex amplitude of the ξth wave. If u depends on both
space xm and on time tn, then the complex amplitude û(ξ) depends on time,
hence ûn(ξ)eixmξ is the ξth wave component of u at time tn = nk. Note that
the phase eixmξ is of magnitude 1. Hence, for stability all we have to study
is each time-dependent complex amplitude ûn(ξ).

Take
un+1
m − unm

k
+ a

unm − unm−1

h
= 0

or un+1
m = (1− aλ)unm + aλunm−1 λ = k/h

take unm =
1√
2π

∫ π/h

−π/h
eimhξûn(ξ)dξ

and substitute in the above equation:

un+1
m =

1√
2π

∫ π/h

−π/L
eimhξ [(1− aλ) + aλe−ihξ]ûn(ξ)dξ︸ ︷︷ ︸

∴ ûn+1

ûn+1(ξ) =
[
(1− aλ) + aλe−ihξ

]
︸ ︷︷ ︸

let g(hξ)

ûn(ξ)

≡ g(hξ)︸ ︷︷ ︸
“amplification

factor”

ûn(ξ)





amplification factor because its magnitude is the amount that the complex
amplitude of each wave in the solution, is amplified in advancing one step in
time.

In fact, from the above expression we obtain

ûn(ξ) = g(hξ)nû0(ξ)

(137) So returning to
un+1
m − unm

k
+ a

unm − unm−1

h
= 0
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First, by Perseval’s Theorem:

h

∞∑

m=−a
|unm|2 =

∫ π/h

−π/h
|ûn(ξ)|2dξ

=

∫ π/h

−π/h
|g(hξ)|2n|ûo(ξ)|2dξ(138)

Recall that for first order single step scheme we require that

(139) h
∞∑

m=−∞
|unm|2 ≤ CTh

∞∑

m=−∞
|u0
m|2

for 0 ≤ nk ≤ T where tn = 0, k, 2k, . . .

for stability.

Comparison of (138) and (139) implies that |g(hξ)|2n must be suitably bounded.
For (137):

un+1
m = unm − aλ(unm − unm−1)

enough to consider

ûnm = eimhξûn(ξ) (is a wave component of solution)

since linear

ûn+1(ξ)eimhξ = ûn(ξ)eimhξ − aλ
(
ûnne

imhξ − ûmei(m−1)hξ
)

un+1(ξ) = [1− aλ(1− e−iθ)]︸ ︷︷ ︸
g(hξ)

ûn(ξ) θ = hξ

|g(θ)|2 = 1− 4aλ(1− aλ) sin2

(
1

2
θ

)

if |g(θ)|2 ≤ 1 then 0 ≤ aλ ≤ 1 ∴

h

∞∑

m=−∞
|unm|2 ≤

∫ π/h

−π/h
|u0(ξ)|2dξ = h

∞∑

m=−∞
|u0
m|2

2
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For this particular example the amplification factor g depended on θ = hξ
only, but in general it can depend on h and k.

Theorem (Stability, Von Newmann): A one-step constant coefficient scheme
is stable if and only if ∃ a constant K (independent θ, k, and h) and some
positive grid spacings k0 and h0 such that

(140) |g(θ, k, h)| ≤ 1 +Kk

∀θ, 0 < k < k0, 0 < h < h0. If g is independent of h, and k then (140) is
replaced by

|g(θ)| ≤ 1

2

Example

Ut + aUx − U = 0 (has solutions that grow with t) using Lax-Friedrichs:

un+1
m − 1

2
(unm+1 + unm−1)

k
+ a

unm+1 − unm−1

2h
− unm = 0

g(θ, k, h) = cos θ − iaλ cos θ + k

|g|2 = (cos θ + k)2 + a2λ2 sin2 θ ≤ (1 + k)2 if |aλ| ≤ 1

so by theorem any stable scheme must have |g|2 larger than 1 for some θ.

Proof: By Parseval’s Theorem

||un||2h =

∫ π/h

−π/2
|g(hξ, k, h)|2n|u0(ξ)|2dξ

if |g(hξ, k, h)| ≤ 1 +Kk ∴

||un||2h ≤
∫ π/h

−π/h
(1 +Kk)2n|û0(ξ)|2dξ = (1 +Kk)2n||u0||2h

Now n ≤ T/k so (1 +Kk)n ≤ (1 +Kk)T/k ≤ ekT

∴ ||un||n ≤ eKt||u0||h which is the condition

(141) h
∞∑

m=−∞
|unm|2 ≤ CTh

J∑

j=0

∞∑

m=∞
|ujm|2 for 0 ≤ nk ≤ T
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Now we prove that if inequality (140) cannot be satisfied for any value of
K ⇒ scheme is not stable. To do so, we can show that any amount of
growth in the solution, that is, we show that the stability inequality (141)
cannot hold.

If for some positive value C there’s an interval of θ’s, θ ∈ [θ1, θ0] and h ∈
(0, h0] and k ∈ (0, k0] with |g(θ, k, h)| ≥ 1 +Ck then we construct a function
v0
m as

û0(ξ) =

{
0 if hξ /∈ [θ1, θ2]√
h(θ2 − θ1)−1 if hξ ∈ [θ1, θ2]

then

||un||2h =

∫ π/L

−π/h
|g(hξ, k, h)|2n|û0(ξ)|2dξ

=

∫ θ2/h

θ1/h

|g(hξ, k, h)|2n h

θ2 − θ1

dξ ≥ (1 + Ck)2n

≥ 1

2
e2TC ||u0||2h for n near T/k.

This shows that the scheme to be unstable if C can be arbitrarily large.

2

Corollary: If a scheme as in previous theorem is modified so that the modi-
fications result only in the addition to the amplification factor of terms that
are O(k) uniformly in ξ, then the modified scheme is stable if and only if the
original scheme is stable.

Proof: If g is the amplification factor for the scheme and satisifies |g| ≤ 1+Kk,
then the amplification factor or the modified scheme g′ satisfies

(142) |g′| = |g +O(k)| ≤ 1 +Kk + Ck = 1 +K ′k

Hence the modified scheme is stable if the original scheme is stable and vice
versa. 2

Stability for variable coefficients

Take Ut + a(x, t)Ux = 0 as an example.
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The general procedure is to consider the problem with a as a frozen coefficient
for each x, t values in question. If each frozen coefficient case is stable then
the scheme is stable. For example, the CFL condition would require

|a(tn, xm)|λ ≤ 1

for all tn, xm in computational lattice.

Remark: Numerical vs Dynamic Stability → Numerical stability refers to
the behavior of approximations to a grid projected equation over a finite time
interval as the lattice is refined. Dynamic stability refers to the behavior of
solutions of PDE as t→∞.

Example

ut + aux + bu = 0 x ∈ R1

, t > 0

for b > 0, solution is dynamically stable (bounded) since solution decays as
t→∞. (Show this using Fourier methods).

for b > 0, solution is unstable.

For above equation a stable numerical scheme would be one in which the
approximation converges to exact solution for any b as k, h→ 0.

2

Comments on Instabilities in Hyperbolic Equation Approximation

1) As always, non-convergent schemes are useless.

2) Take Lax-Friedrichs: |g(θ)|2 = cos2 θ+a2λ2 sin3 θ. The maximum value

of g is attained when θ =
π

2
, where |g| = 1.6 ⇒ so instabilities are

related to high frequency oscillations.

3) In general (not a theorem) ⇒ instabilities will manifest themselves as
rapid growth of high wave numbers and would then be more evident
if the initial data contains high amplitude high wave number modes
(e.g. non-smooth data). Also, the instabilities will have wavelengths
that are comparable or commensurate to the grid space in x. Also, the
instability phenomenom will be local in nature but propagate in time.
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Of course, it will eventually swamp the solution, but for close times
after the onset of the instability, they are local.

4) Having a good feel for this allows one to discern between programming
errors and improper schemes.

5) The other considerations related to stability are that schemes with very
restrictive conditions on step sizes, in particular, on time steps, will
require more computational effort in calculation. This is ok, but aside
from stability, we also need to consider the dissipation and dispersion
in the scheme.

6) Stability of a scheme requires that this issue be checked carefully at
the boundaries. One of the most common sources of instabilities comes
from using inappropriate boundary conditions.

Example

Take Lax-Friedrichs on
Ut + aUxxx = f.

The finite difference approximation is

un+1
m =

1

2
(unm+1 + unm−1)−

1

2
akh−3(unm+2 − 2unm+1 + 2unm−1 − unm−2) + kfnm

this scheme is consistent if h2/k → 0 as h and k tend to 0.

The amplification factor in this case is

g(θ) = cos θ + i4akh−3 sin θ sin2 1

2
θ

so scheme is stable if
4|a|k
h3

is bounded.

However the consistency condition h2

k
→ 0 as h and k → 0 and stability

condition
4|a|k
h3

bounded cannot be both satisfied.

∴ Scheme is not convergent. 2

Truncation Error and Order of Accuracy for FD Schemes
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definition: A scheme Pk,hu = Rk,hf that is consistent with PU = f is accurate
of order p in time and q in space if for any smooth φ(t, x)

Pk,hφ−Rk,hPψ = ′(kp) +O(hq)

We say scheme is order (p, q). 2

Example Crank-Nicholson

Take

Ut =
U(t+ k, x)− U(t, x)

k
+O(k2)

for

Ut(t+
1

2
k, x)

Take

Ux = (t+
1

2
k, x) =

Ux(t+ 1
2
k, x) + Ux(t, x)

2
+Ok2

=
1

2

[
U(t+ k, x+ h)− U(t+ k, x− h)

2h
+
U(t, x+ h)− U(t, x− h)

2h

]

+ O(k2) +O(h2)

Using these approximate Ut + aUx = f about
(
t+ 1

2
k, x
)

we get

un+1
m − unm

k
+ a

un+1
m+1 − un+1

m−1 + unm+1 − unm−1

4h
=
fn+1
m + fnm

2

And is an order (2, 2) scheme.

Exercise

For Ut + aUx = 0 show that Crank-Nicholson has an amplification factor

g(θ) =
1− i1

2
aλ sin θ

1 + i1
2
aλ sin θ

and is unconditionally stable.

Exercise

Show that Lax-Wendroff is consitent with Ut + aUx = f :

g(θ) = 1− 2a2λ2 sin2 1

2
θ − iaλ sin θ

stable if |aλ| ≤ 1 and of order (1, 2)
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Lax Wendroff:
un+1
m − unm

k
+ a

unm+1 − unm−1

2h
− a2k

2h2
(unm+1 − 2unm + unm−1)

=
1

2

(
fn+1
m + fnm

)
− ak

4h

(
fnm+1 − fnm−1

)

2

Order of Accuracy: The choice of norm is problem-dependent. Could use our
grid L2 norm. Then

Error(t) = ||U(t, ·) − un||h = (h
∑

m |U(t, xm)− unm|2)
1

2 = 0(hr) gives the
accuracy of the “solution” un as an approximation to exact solution U(t, x)
on the grid. The usefulness of the above norm is that we should get the order
of accuracy to be equal to order of truncation of scheme FOR SMOOTH
DATA.

Boundary Conditions

Numerical schemes may require points outside of computational domain.
This happens at boundary conditions. Suppose we are solving a problem
over a space grid indexed by m = 0, 1, · · ·M . Let unm be an approximation
to U(xm, tn). Hence the edge variables are un0 and unM . For example, suppose
we have a scheme that requires unM+1 in order to determine unm. This can
happen when m = M , i.e. at the edge of the domain and we will have that
unm is determined by unM+1 as well as by interior grid quantities.

Numerical boundary conditions should be some form of extrapolation that
determines the solution on the boundary in terms of the solution in the
interior. For example:

some numerical b.c.’s





un+1
M = un+1

0 Periodic
un+1
M = un+1

M−1 simple extrapolation
un+1
M = 2un+1

M−1 − un+1
M−2

un+1
M = unM − aλ(unM − unM−1) (quasi-characteristics)

We will consider boundary conditions further when we discuss Parabolic
equations (see 0.5.1).

There are three aspects to numerical boundary conditions
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• The real boundary conditions, along with initial data and the pde,
should lead to a well-posed problem.

• Need to come up with a numerical approximation of the physical bound-
ary conditions, and this may lead to approximate boundary conditions
which have their own inherent truncation error as well as round-off
errors.

• A stable numerical scheme may become unstable by a bad choice of
boundary data or a bad choice of approximating scheme for the bound-
ary data!!

Recall that von Neumann stability only gives stability of IVP, so we need
to consider stability of the scheme in the neighborhood of the boundaries:
always work out the stability issues on each boundary. First do
these separately, and then check that they all work together. When
we do parabolic problems we will use elementary matrix methods to infer
whether or not a particular choice of b.c. will lead to instabilities when
coupled to a particular scheme.

But now we revert to two important aspects of the quality of an approxi-
mating scheme, which are most important in hyperbolic problems but that
also are considerations in other types of evolutionary problems. These are:
Dissipation and Dispersion.

Dissipation

Roughly speaking, numerically-induced energy loss. If it is worse that the
dissipation inherent in the PDE, it will lead to incompatible approximations
to the real solution. The requirement that a scheme have |g(hξ)| ≤ 1 ensures
stability. If |g(hξ)| = 1 for all hξ, it means that the amplitude of the mode
ξ is not affected by time-stepping: it does not get diminished. However, if
|h(ξ)| < 1 for some or all hξ, a slight or large loss in amplitude is incurred.
This is dissipatioin (numerical) and is an artifice of the scheme rather than
of the equation being approximated.

For evolutionary PDE’s, as can be imagined, if a scheme has more numerical
dissipation than is inherent in the PDE being approximated, the solution will
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eventually be different in amplitude and phase to the approximation solution
provided by a scheme with less dissipation. The phase phenomenom must
be considered too, since the scheme will in general have different rates of
dissipation for different modes.

In order to measure to dissipation concretely, we have to agree on a definition
of dissipation. This is one possibility:

definition: Let θ = ξh. A scheme is dissipative of order 2r if there exists
a positive contant c, independent of h and k, such that each amplification
factor gν(θ) satisfies

|g(θ)|2 ≤ 1− c sin2r

(
1

2
θ

)

Other definitions will replace sin2r

(
1

2
θ

)
by |θ|2r.

Example

This happens at boundary conditions. Suppose we are solving a problem
over a space grid indexed by m = 0, 1 · · ·M . Let unm be an approximation to
U(xm, tn). Hence the edge variables are un0 and unM .

Lax-Wendroff:

|g(θ)|2 = 1− 4ae2λ2(1− a2λ2) sin4 1

2
θ

For |aλ| = 1 we have |g(θ)| = 1, nondissipative. But for 0 < |aλ| < 1 the
scheme is of order 4 in dissipation.

Example: Show that

Leapfrog and Crank Nicholson → both non-dissipative since their amplifi-
caiton factors are identically 1 in magnitude.

Example

Lax-Friedrichs: show that |g(θ)| = 1 for θ = 0 and π, but less than 1 for
their values ⇒ dissipative.

Remark: Sometimes dissipation is good. It may also be added to schemes in
order to stabilize them. For example, adding

Dissipation may also be added to schemes in order to stabilize them. For
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example, adding
ε

2k

(
1

2
hδ

)4

vn−1
m

where δ2vn−1
m ≡ vm+1 − 2vm + vm=1

and ε≪ 1 leads to

g± = −aλ sin θ ±
√

1− a2λ2 sin2 θ − ε sin4 1

2
θ

if ε < 1− a2λ2 scheme is stable and of O(4) in dissipation.

Dispersion There are PDE’s that have dispersive terms (KdV, Nonlinear
Schrodinger Equation, etc). In hyperbolic problems, these dispersive terms
force each Fourier mode to travel at different speeds. Hence, if a wave that
was compact at some time is subjected to dispersion (and is not balanced
by other other effects, such as could be possible with nonlinearity or dissi-
pation), will eventually spread out in space and time. An example of a real
physical system in which dispersive effects are readily observed is: throw a
rock into a pond and watch the concentric waves propagate out of the center
of impact. Far from the center you see that waves of different wavelengths
will separate. This would not happen if the surface of the lake, which is ca-
pable of supporting waves, were not dispersive. In the absence of dispersion
the initial disturbance set up by the rock would propagate out as a single
and compact ring of waves.

Dispersion can also be caused unwittingly by certain numerical approxima-
tions to equations. If it is unwanted, it is a form of distortion and it turns out
a fairly important one. Suppose we were solving the one-way wave equation
with constant speed. In Figure 25, which would correspond to the approx-
imation with a numerical method with zero dispersion, we have the initial
data, which can be thought of as a superposition of waves (via Fourier meth-
ods) of wavenumber κ and corresponding frequency ω all traveling at speed
c, constant. Hence, the dispersion relation ω = κc, where c is constant. In
Figure 26 we would have the same initial data with each wave of component
traveling at speed c(κ) and the initial data would then spread and distort.

c is fixed constant speed. k is the wave number and ω the frequency.

169



x

t

ω

κ
ω =  κc

Figure 25: Non-dispersive approximation to the one-way wave equation with
wave speed c, constant. The dispersion relation is a straight line with slope
c

Take

U(t, x) =
1√
2π

∫ ∞

−∞
eiωxe−iωatÛ0(ω)dω(143)

This is a solution to

Ut + aUx = 0

U(x, 0) = U0(x)

Here a is constant.

From (143) we conclude that

Û(t+ k, ω) = e−iωkÛ(t, ω).(144)

A one-step finite difference scheme gives

Ûn+1 = g(hξ)Ûn(145)
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x

t

ω

κ
ω= c (κ)

Figure 26: Dispersive approximation to the one-way wave equation with wave
speed c no longer a constant, hence the dispersion relation is ω = c(κ). The
local slope of this function below is the speed, which shows that the higher
frequencies are traveling faster than the slower ones.
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Comparing (144) and (145) we expect g(hξ) to be a good approximation to
e−1ξak. Let’s write g(hξ) in term s of magnitude and phase:

g(hξ) = |g(hξ)|e−iξα(hξ)k

“phase speed” is the speed at which waves of wave number ξ are propagated
by the FD scheme.

If α(hξ) = a, constant, for all ξ ⇒ waves would propagate at correct speed
. . . thus is what we expect from analytical solution of ut + aux = 0.

The “phase error” could be a measured by a− α(hξ).

When the waves travel at different speeds, we say the FD scheme is dispersive
and can use the phase error to assess how badly this affects the solution.
When the waves travel at constant speed α0 = k′a, where k′ is a constant
and a is the wave speed in ut + aux = 0, we say the FD scheme is non-
dispersive.

Example

Lax-Wendroff: g = 1− 2(aλ)2 sin2 1
2
hξiaλ sinhξ

and so take [α(hξ)ξk] =
aλ sinhξ

1− 2(aλ)2 sin2 1
2
hξ

But we want
tan−1

ξk

[
aλ sinhξ

1− 2(aλ)2 sin2 1
2
hξ

]
= α(hξ)

Take the low wave number limit ξ → 0

α(hξ) = a

{
1− 1

6
(hξ)2[1− (aλ)2] + 0(hξ)4

}

So for hξ small and (aλ) < 1, α(hξ) < a. Also if |aλ| → 1 then the dispersion
is smaller.

Example Find dispersion behavior for larger ξ → h−1π.

Remarks

(1) In general, for hyperbolic problems, we usually want to take |aλ| close
to stability limit: usually gives largest time steps and in general, for
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dissipative schemes, the least dissipation. But more importantly, most
likely would yield the smallest dissipation and disperse errors.

(2) The comments here apply broadly to all evolutionary PDE approxima-
tions.

(3) The leap-frog is an example of a scheme with no dispersion error when
aλ = 1. It doesn’t have dissipation either when aλ = 1. However, the
leap-frog method have a couple of notorious problems: a) it can have
bad stability problems when coupled to certain boundary conditions. b)
being that it is a 2nd order-in-line method, its approximation is made of
2 traveling wave solutions, traveling in opposite directions, generally.
However, if the hyperbolic problem being approximated only admits
1-way wave solutions, a single wave, care must be exercised in either
not exciting the spurious solution or in actively suppressing it . . . one
popular suppressing technique is to revert to a single Euler every 100’s
or 1000’s time steps and then reverting back to Leapfrog (doing too
many Euler will defeat the purpose of using leapfrog and will generate
a lot of dissipation). There are other techniques for this, such as using
time- and/or space-averaging filters.

Group Velocity and Propagation of Wave Packets

The group velocity is the speed at which the energy in a wave packet travels
at. It is a useful concept in nonlinear and dispersive equations. It can be
used to explain some rather striking behavior of certain schemes, including
the explanation of certain instabilities caused by boundary conditions (see
Trefethen).

We’ve seen that dispersive FD schemes will cause a pure wave with wave
number ξ0 to travel with phase speed α(hξ0). We want to know what is the
velocity of propagation of the center of mass of a wave packet.

The scheme group velocity is

γ(θ) ≡ d

dθ
(θα(θ)),where θ = hξ

A wave packet example suppose initial data of the form

u(0, x) = eiξ0xp(x)
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Figure 27: Wave Packet

where p(x) is a relatively smooth function decaying rapidly about its centor
of mass. For

ut + aux = 0

the solution is u(t, x) = eiξ0(x−at)p(x− at)

p(x) is the envelope of the wave packet and eiξ0x is the carrier wave, see
Figure 27

For a finite difference approximation below, γ is the group velocity:

u(t, x) = eiξ0(x−α(hξ0)t)p(x− γ(hξ0)t)
(in the case of zero dissipation). Note that since α(hξ) → a as h → 0 we
have that γ(hξ0)→ a as h→ 0 and u→ U , the exact solution.

Conservation Laws

(146)

Is a system of equations of the form

{
∂u

∂t
+∇ · F(u) = 0 u ∈ Rd

u(0,x) = u0(x) x ∈ Rn, t > 0

It’s a conservation law since the flux F will be constant if du/dt = 0. Conser-
vation law equations are some of the most important and ubiquitous equa-
tions of Physics.
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Conservation Laws have a connection to the wave equation. Take the case
of one space dimension: if f is smooth enough, with x ∈ R1 for example:

∂u

∂t
+ [f(u)]x = 0⇒ ∂u

∂t
+
∂f

∂u

∂u

∂x
= 0

∂f

∂u
= c is a “speed”

then
∂u

∂t
+ c

∂u

∂x
= 0, the 1-way wave equation.

A very good source of information on approximating solutions numerically
to (146) is LeVeque’s book.

We’ll do a classic example: Burger’s Equation in 1-D

Take
∂u

∂t
+

1

2

∂

∂x
(u2) = 0⇒ ∂u

∂t
+ uux = 0

with
u(x, 0) = g(x) x ∈ R

1

and assume that

∫ ∞

−∞
|g(x)|2dx <∞ and g(x) is differentiable.

Now can use analysis at beginning of this section to show that the character-
istics corresponding to g(x) = a step function will look like those in Figure
28 and at the step rise we get a rarefaction. Can you come up with a g(x)
that would lead to a shock, i.e. a crossing of characteristics?

There are many techniques for approximating solutions to this and other
conservation laws ⇒ they are front-tracking techniques shape-preserving,
flux-limited, etc. But most are based on solving the Riemann problem locally,
i.e., following the characteristics locally.

One such family of methods: GODUNOV-METHODS, which is a mildly
dissipative method.

Take ∆tn be the step size that goes from n to n + 1 time level. The time
step size is variable.

let u0
m =

1

∆x

∫ (m+ 1

2
)∆x

(m− 1

2
)∆x

g(x)dx
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x

t

Figure 28: g(x) = θ(x), a step, leading to a rarefaction.

Suppose all unm are known, we construct a piecewise constant function w[n](·, tn)
by letting it equal unm in each interval.

Let Πm ≡
(
xm− 1

2
, xm+ 1

2

]
and evaluate the exact solution to the Riemann

problem ahead of t = tn.

The idea is to let each interval Πm “propagate” in the direction determined
by its characteristics.

Choose a point (x, t), t ≥ tn. There are 3 possibilities

(1) ∃ !m such that the point is reached by a characteristic emanating from
Πm. Since characteristics propagate constant values, the solution of
the Riemann problem at this is unm.

(2) ∃ !m such that the point is reached by characteristics emanating from
the intervals Πm and Πm+1. In this case, as the 2 intervals “propagate”
in time, they are separated by a shock. The shock advances along a

straight line starting at

(
m+

1

2

)
∆x and whose slope is the average

slopes in Πm and Πm+1, i.e.
1

2

(
unm + unm+1

]
.

Let this line be ρm. The value at (x, t) is unm if x < ρm(t) and unm+1 if
x > ρm(t).
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Figure 29: Piece-wise constant approximation of g(x) and the characteristics
ρ’s emanating from such a g(x), pictured above g(x).

(3) Characteristics from more than 2 intervals reach the point (x, t). In
this case, cannot assign a value to the point.

Simple geometry demonstrates that (3) which we must avoid occurs for t >
t̃ > tn is the lowest solution to equation ρm(t) = ρm+1(t) for some m.

This can be seen in Figure 29

let t′ be the time of an encounter between the first encounter. Choose

tn+1 ∈ (tn, t
′)and ∆tn = tn+1 − tn

Since tn+1 ∈ (tn, t
′ ] cases (143)and (144) can be used to construct a solution

w[n](x, t)∀tn ≤ t ≤ tn+1. Choose the

un+1
m =

1

∆x

∫ (m+ 1

2
)∆x

(m− 1

2
)∆x

w[n](x, tn+1)dx(147)

This integral can be calculated.

Disregarding shocks w[n] obeys Burger’s Equation for t ∈ [tn, tn+1] ∴

∂w[n]

∂t
+

1

2

∂(w[n])2

∂x
= 0⇒ w[n](x, tn+1) = w[n](x, tn)−

1

2

∫ tn+1

tn

∂

dx
[w[n]]2dt

substituting (147) results in

un+1
m =

1

∆x

∫ (m+ 1

2
)∆x

m+ 1

2
∆x

{
w[n](x, tn)−

1

2

∫ tn+1

tn

∂

∂x
[w[n]]2dt

}
dx
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Since Dunn+m has been obtained by an averaging procedure given in we have
after exchanging the order of integration

un+1
m = unm −

1

2∆x

∫ tn+1

tn

∫ (m+ 1

2
)∆x

(m− 1

2
)∆x

∂

∂x
[w[n]]2dxdt

= unm −
1

2∆x

∫ tn+1

tn

{[
w[n]

((
m+

1

2

)
∆x, t

)]2
− [w[n]

(
m− 1

2

)
∆x, t

)]2}
dt

Recall our definition of tn+1. No vertical line segments

(
(m+

1

2
)∆x, t

)
, t ∈

[tn, tn+1], may cross the discontinuties ρj ∴ the value of w[n] across each such
segment is constant – equaling unm or unm+1 (depending on the slope of ρm: if
it points rightwards it is unm. Otherwise unm+1

Denote this value by χm+ 1

2
then

un+1
m = unm −

1

2

∆tn
∆x

(
χ2
m+ 1

2

− χ2
m− 1

2

)

This is the simplest, first order Godunov scheme. 2

In general methods for the approximation of conservation laws should fol-
low characteristics...solve the Riemann problem locally. Godunov is about
the local determination of the upwind direction. Another popular upwinding
technique is the ENO switch: (see Osher and Engquist) (which is a member
of a family of nonlinear techniques that are known as Total Variation Dimin-
ishing (TVD) schemes and are very effective in modeling shocks since they
have little or no ringing at discontinuities:

f−(y) ≡ [min(y, 0)]2 f+(y) ≡ [max(y, 0)]2

y ∈ R

to get
∂u

∂t
+

1

∆x

[
∆+f−(um) + ∆−f+(um)

]
= 0

if um−1, um, um+1 > 0→ characteristic propagate right ⇒
∆+f−(um) = 0 and ∆−f+(um) = [um]2 − [um−1]

2

if um−1, um, um+1 < 0→ characteristic propagate left ⇒
∆+f−(um) = [um+1]

2 − [um]2 and ∆−f+(um) = 0.

Again, scheme determines upwind direction locally.
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0.5 PARABOLIC EQUATIONS AND THE

ADVECTION-DIFFUSION EQUATION

The simplest example is the “Heat Equation”
Let U = U(x, t), and t > 0. The Heat Equation is

{
Ut = bUxx b > 0 real, called “dissipation constant”
U(0, x) + U0(x)

plus boundary values in x. It is a boundary-initial value problem, but for
now, take x ∈ R1.

0.5.1 Properties of the Solution

Expect solutions to get smoother as t→∞. To see this take Fourier trans-
form, with û(ω, t) = F(u(x, t)) then

Ût = −bω2Û

integrating and using initial data:

Û(t, ω) = e−bw
2tÛ0(ω)

(148) ∴ U(t, x) =
1√
2π

∫ ∞

−∞
eiωxe−bω

2tÛ0(ω)dω.

Using Û0(ω) =

∫ ∞

−∞

1√
2π
e−iωyU0(y)dy in (148), interchanging the intergra-

tions, one can show that (148) is equal to

U(t, x) =
1√
4πbt

∫ ∞

−∞
e−(x−y)2/4btU0(y)dy.

Hence, solution broadens and dissipates at a rate of α = 1/
√
t this estimate

corresponds to 1 space diversion. Can you estimate the rate of dissipation in
time in 2 and 3 space dimensions?
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An important equation related to both hyperbolic and parabolic equations
is the advection-diffusion equation

(149) Ut + aUx = bUxx

To solve, let y = x− at and set

w(t, y) = U(t, y + at)

then wt = Ut + aUx = bUxx

and wy = Ux wyy = Uxx

(150) so wt = bwyy

Hence, since U(t, x) = w(t, x− at) the solution of (149) when examined in a
moving coordinate system moving with speed a, is (150). Hence the solution
travels with speed a and diffuses with strength b.

General (Petrovskii-form) Parabolic Equation

(151) Ut = BUxx + ∆Ux + CU + F (t, x)

B has eigenvalues with all positive real parts and ∆ is the Laplacian operator.

For (151), the following estimate holds:

∫ ∞

−∞
|U(t, x)|2dx+

∫ t

0

∫ ∞

−∞
|Ux(s, x)|2dxds

≤ CT

(∫ ∞

−∞
|U(0, x)|2dx+

∫ t

0

∫ ∞

−∞
|F (b, x)|2dxds

)

for some 0 ≤ t ≤ T . CT is a constant which may depend on T .

Boundary Conditions for Parabolic equations

T0U = b0 Dirichlet-type

T1
dU

dx
+ T2U = b1 Robin-type

Here, T0 is d0 × d matrix and

T1 and T2 are (d− d0)× d matrices
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0.5.2 Finite Difference Schemes

Take Ut = bUxx + f(x, t). Let unm = U(nk,mh) = U(tk, xm)

Let δx be the difference operator, such that

δxu
n
m = un

m+ 1

2

− un
m− 1

2

similarly, δtu
n
m = u

n+ 1

2
m − un−

1

2
m .

Exercise: Show that δ2
xu

n
m = unm+1 − 2unm + unm−1

Backward-time/central space approximation:

un+1
m − unm

k
=

b

h2
δ2
xu

n+1
m + fnm

Exercise

Show that the above scheme is unconditionally stable of order (1, 2), and

dissipative when µ ≡ k

h2
is bounded away from 0.

Crank-Nicholson (CN)

An old-time favorite:

V n+1
m − unm

k
=

1

2h2
b
(
δ2
xu

n+1
m + δ2

xu
n
m

)
+

1

2

(
fn+1
m + fnm

)

Exercise

Show that CN is implicit, unconditionally stable, of order (2, 2). Further-
more, show that it is dissipative of order 2 if µ is constant, but not dissipative

if λ =
k

h
constant.

Boundary Conditions

Can have tremendous effect on solution. Choice dictated by physics and
well-posedness.
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Numerical approximations to boundary condition’s must be done with great
care since they are potentially capable of making an otherwise stable scheme
unstable.

There’s usually no difficulty implementing Dirichlet type boundary condi-
tions: take boundary conditions at x = 0, for simplicity:

U(t, 0) = b(t) approximated as un0 = bn

No problem with periodic boundary condition’s: assume other boundary at
x = L > 0 :

U(t, 0) = U(t, L) approximated as un0 = unm+1

if there are M + 1 gridpoints.

What about Neumann? Take x = 0 and x = 1 as boundaries:

Consider first
∂U

dx
|x=0 = a0 and

∂U

∂x
|x+1 = a1 A first-order approximation

would be
un1 − un0

h
= a0 and

unM−Unm−1

h
= a1.

Using ghost values un−1 and unM+1, a second-order approximation

un1 − un−1

2h
= a0 and

unM+1 − uM−1

2h
= a1

One can also use a 2nd-order approximation, the 1-sided

−3un0 + 4un1 − un2
2h

= a0

and a similiar expression can be found for the other boundary.

Remarks

• The choice of boundary conditions is dictated by the physics and math-
ematical well-posedness. However, the discrete version depends on nu-
merical stability considerations. ALWAYS CHECK FOR STABILITY
AT ENDPOINTS.
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• This is not a theorem, but in general you want to use the same order of
finite difference approximation to the boundary conditions as you did
for the interior points. What happens if you go with lower order? You
defeat the purpose of using a high order scheme. What happens when
you go higher order? In general, you get an ill-poosed linear algebraic
problem.

• Using one-sided derivatives is ok, but these are prone to generate ill-
posed linear algebraic problems if you use mix them. This will be
apparent when you do your stability study at the end points.

Note on Advection-Diffusion Equation (UPWINDING IS IMPORTANT)

We’re not considering this important equation, other than by an example
that illustrates one of the important facets that makes this equation tricky to
approximate. We’ll take as example the forward- time/central-space scheme.

There are a couple of things we’re going to learn: upwinding, and also mixing
explicit and implicit methods when you have you’re solving a problem of
mixed type.

We’ll work by example:

(152)
un+1
m − unm

k
+ a

unm+1 − u2
m−1

2h
= b

unm+1 − 2unm + unm−1

h2

as an approximation to

(153) ut + aux = buxx, take

for concreteness︷ ︸︸ ︷
a > 0 and

must be︷ ︸︸ ︷
b > 0

not because its a good algorithm, but because it illustrates the point to be
made very simply:

Scheme (152) is (1, 2) order accurate and 2nd order accurate overall because
of stability requirement

bµ ≤ 1

2
(check this!)

where µ =
h

k2
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Note that this restriction is rather severe on the time step, since getting good
resolution in space by making h small might mean really tiny k, which means
long computing times.

Now,

let α ≡ ha

2b
=

aλ

2bµ
“Cell Reynold’s Number” or“Cell Peclet Number,” and let λ =

k

h
.

The α is a ratio of the importance of inertial (wave-like or signal-propagating
effects to diffusion effects). So that if α < 1 we have a diffusion dominated
problem, etc.

Solving for un+1
m and taking the absolute value of both sides yields

|un+1
m | ≤ (1− 2bµ)|unm|+ bµ(1− α)|unm+1|+ bµ(1 + α)|unm−1|

Since we require that

(154) max
m
|un+1
m | ≤ max

m
|unm|

for parabolic equation approximations, by setting α ≤ 1 we satisfy (154).

Hence we need to satisfy two conditions

{
bµ ≤ 1

2

α ≤ 1← satisfied if h ≤ 2b

a

the second is a restriction on mesh spacing and could be very restrictive.

If bµ ≤ 1

2
is the stability condition, what does α ≤ 1 do? It guarantees that

the scheme will behave qualitatively like a parabolic equation approximation.
What you will see if you set α > 1 is the appearance of spurious oscillations
. . . they usually do not grow excessively and they result from inadequate
resolution.

One way to avoid the restriction on mesh-spacing is to use “upwind differ-
encing.” The scheme then is

(155)
un+1
m − unm

k
+ a

unm − unm−1

h
= b

1

h2

(
ubm+1 − 2unm + unm−1

)
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or un+1
m = [1− 2bµ(1 + α)]unm + bµunm+1 + bµ(1 + 2α)unm−1

If 1− 2bµ(1 + α)→ 0⇒ scheme satisfies (154). This is satisfied if

2bµ+ aλ ≤ 1

Oscillations are eliminated but now we have 1-order accuracy in space. When
b small and a large (typical) this condition is much less restrictive than h ≤
2b/a. Note, however that (155) can be written as

un+1
m − unm

k
+ a

unm+1−unm−1

2h
=

(
b+

ah

2

)

︸ ︷︷ ︸

(unm+1 − 2unm + unm−1

h2

)
h2

“artificial viscosity”
added to make solutions

non- oscillatory.

Remark

• Note that upwinding direction was given by a. If a < 0, the derivative
would involve m+ 1 and m values of u instead.

• What if a has different signs for different parts of the domain? Use
a switching in your code to check for upwinding direction and then
change the derivative to the relative upwind direction.

• One way to avoid oscillations due to constraints on the Peclet number
and at the same time get larger time steps for asymptotic stability is
to compute the problem by using an explicit upwind in the advective
term Ux, which will generate a mild restriction on mesh spacing h, and
then go implicit in the diffusive term Uxx, such as Crank Nicholson.
The resulting code will be quite robust.
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0.5.3 Reduction of Parabolic Equations to a System of
ODE’s

Consider





∂U

∂t
=
∂2U

∂x2
0 < x < X t > 0

U(x, 0) = g(x) 0 ≤ x ≤ X

and known BV’s at x = 0 and x = X ∀t > 0

Semi-discretizing, using center differences in x (as a particular example)

dU(t)

dt
=

1

h2

{
U(x− h, t)− 2U(x, t) + U(x+ h, t)

}
+O(h2)

Subdivide interval 0 ≤ x ≤ X into N equal subintervals with xi = ih,
i = 0 · · ·N , where Nh = X. ui(t) is an approximation to ui(t), where
Ui = u(ih, t) so the i = 0 and i = N are boundary lines. The equation for ui
at some time t are

N − 1 ODE’s





du1(t)
dt

= 1
h2 (u0 − 2u1 + u2)

du2(t)
dt

= 1
h2 (u1 − 2u2 + u3)

...
...

duN−1

dt
= 1

h2 (uN−2 − 2uN−1 + uN)

u0 and uN are known values (boundary values) let V(t) = [u1, u2 . . . uN−1]
T

then the system can be written as

(156)
dV(t)

dt
= AV(t) + b

b is a column of zero’s and known values of u

A =
1

h2




−2 1 0 0 . . . 0
1 −2 1 0 . . . 0
0 1 −2 1 . . . 0

0 0
. . . . . . . . . 0

0 . . . 0 1 −2 1
0 . . . 0 0 1 −2




(N − 1)× (N − 1) matrix
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Remark: for y = y(t), the solution to

dy

dt
= ay + b

y(0) = g

is y(t) = − b
a

+

(
g +

b

a

)
eat

2

Solution to

(157) V(t) = −A−1b + etA(g + A−1b)

(158) ∴ V(t+ k) = −A−1b + ekAetA(g + A−1b)

substitutions (157) in (158)

V(t+ k) = −A−1b + ekA
(
V(t) + A−1b

)

Note: if b = 0⇒ V(t+ k) = ekAV(t).

Stability: perturb g to g∗ then

V∗(t) = A−1b + etA(g∗ + A−1b)

subtracting V∗(t)−V(t)︸ ︷︷ ︸
e(t)

= eTA (g∗ − g)︸ ︷︷ ︸
e(0)

e(t) = etAe(0)

so we require that ||A|| ≤ 1 for stability.

Note on
dV

dt
= AV + b

Take P a constant coefficient real n× n matrix, then

eP = I + P +
P 2

2
+
P 3

3!
+ · · ·

∞∑

m=0

Pm

m!
(159)

here P 0 ≡ I is the n× n identity matrix
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If Q is a real n× n matrix such that PQ = QP (commute) then

eP eQ = eQeP = eP+Q

Hence eP e−P = e−P eP = e0 = I

premultiplication of eP e−P = I by (eP )−1 then shows that

e−P = (eP )−1

On putting P = At in (159) and differentiating with regards to t we get that

d

dt
(eAt) = AeAt = eAtA

Now consider V(t) = eAtg where g is independent of t. This clearly satisfies
the condition V(0) = g. Differentiation with regards to t gives

dV

dt
= AeAtg = AV

In other words the solution of

dV

dt
= AV with V(0) = g , is

V(t) = eAtg

Similarly, the vector function

{
V(t) = −A−1b + etA(g + A−1b)
V(0) = g

is the solution of
dV

dt
= AV + b

provided b and A are independent of t

Finite Difference Schemes from Systems of ODE’s

For simplicity assume g given and that the boundary values associated with
∂u

∂t
=
∂2u

∂x2
are 0.

for 0 ≤ x ≤ X

The solution is approximately

(160) V(t+ k) = ekAV(t) t = 0, k, 2k, . . .
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where A is given before. The FD comes in approximating ekA. First, notice
that

ekA = I + kA+
1

2
k2A2 + · · ·

Then, an obvious approximation is ekA ≈ I + kA, so (160) is approximately

(161) V(t+ k) = (I + kA)V (t)

if t = nk and µ = k/h2 then (161) is




un+1
1

un+1
2

:
:
un+1
M−1




=




(1− 2µ) µ 0
µ (1− 2µ) µ

. . . . . . . . .

µ (1− 2µ) µ
0 µ (1− 2µ)







un1
un2
:
:
unM−1




or un+1
m = µunm−1 + (1− 2µ)unm + µu2

m+1, m = 1, 2 . . .M − 1

with Mh = X

We can use Padé Approximants to get better approximations to ekA.

Padé Approximants to eθ , where θ is real:

Assume eθ can be approximated as
1 + p1θ

1 + q1θ
; p1, q1 constants.

then we need 2 equations to determine p1, q1.

eθ =
1 + p1θ

1 + q1θ
+ c3θ

3 + c4θ
4 + · · ·

multiplying both sides by denominator

∴ (1 + q1θ)(1 + θ +
1

2
θ2 +

1

6
θ3 · · · ) = 1 + p1θ + (1 + q1θ)(c3θ

3 + c4θ
4 + · · · )

Hence (1 + q1 − p1)θ + (1
2

+ q1)θ
2 +

(
1
6

+ 1
2
q1 − c3

)
θ3 + higher order terms

= 0

This is uniquely satisfied to O(θ3) by p1 =
1

2
q1 = −1

2
c3 = − 1

12
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Hence r̂1/1 ≡
1 + 1

2
θ

1− 1
2
θ

is a (1, 1) Padé Approximation of eθ of order 2. It has

leading-order error = − 1

12
θ3.

In general

eθ =
1 + p1θ + p2θ

2 + · · · pT θT
1 + q1θ + q2θ2 + · · · qsθs

+ cS+T+1︸ ︷︷ ︸
constant.

θS+T+1 +O
(
θS+t+2

)

Hence r̂1/S =
PT (θ)

QS(θ)
is the (T, S) Padé Appointment of order T + S to eθ

Exercise: Show that

(T, S) r̂T/S Principal
Error Term

(1, 0) 1 + θ
1

2
θ2

(2, 0) 1 + θ + 1
2
θ2 1

6
θ3

(2, 1)
1+

2

3
θ +

1

6
θ2

1−
1

3
θ

− 1
72
θ4

2

Example:

Approximate V(t+ k) = ekAV(t) using v̂1/1

⇒ V(t+ k) = (I − 1

2
kA)−1(I +

1

2
kA)V(t)
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or (I − 1
2
kA)V(t+ k) = (I + 1

2
kA)V(t)

or −µun+1
m−1 + 2(1 + µ)un+1

m − µun+1
m+1 = µunm−1 + 2(1 − µ)unm + µunm+1m =

1 · · ·M − 1
Crank-Nicholson!

The r̂1/1 is also called a “Unitary” approximation, which is important prop-
erty of the Schroedinger equation which is important to preserve.

A and L Stability

Continuing our discussion of
∂U

∂t
=
∂2U

∂2x
t > 0 < X

with u(0, x) = g(x) and assume for simplicity that boundary values are zero.

Take V(0) = [g1, g2 · · · gM−1]
T assume that Mh = X

V(t) is an approximating vector to U(t)

V(tn + k) = r̂T/S(kA)V(tn)

but
V(tn) = r̂T/S(kA)A(tn−1), and so on,

which leads recursively to

(162) V(tn) = [r̂T/S(kA)]nV(0)

The eigenvalues of A
(
for center difference approx to

∂2

∂x2

)
are

− 4

h2
sin2

(
ℓπ

2M

)
s = 1, 2, · · ·M − 1

and are all different. Hence the eigenvectors of A are independent and a basis
for the (M − 1)-dimensional space of the vector g of initial values∴

g =
M−1∑

ℓ=1

cℓφℓ

∴ (162) can be expressed as

(163) V(tn) = [r̂T/S(kA)]n
M−1∑

l=1

clφl =
M−1∑

l=1

cl[r̂T/S(kA)]nφl
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Since Aφl = λlφl and we know that f(A)φl = f(λl)φl it follows that (163)
can be expressed as

(164) V(tn) =
M−1∑

l=1

cl[r̂T/S(kλl)]
nφl.

(164) shows that V(tn) will tend to the null vector as n→∞ if and only if

|r̂T/S(kλl)| < 1 l = 1, 2, · · ·M − 1

If this condition is subject to µ = k/h2 value, the equations are “CONDI-
TIONALLY STABLE.”

When |r̂T/S(λlk)| < 1 ∀ µ > 0⇒ “A− Stable” or unconditionally stable

Although A stability implies that −1 < r̂T/S(kγs) < 1 for real r̂T/S, it is
possible that some values of r̂T/S(kλl) be close to −1 and hence for these
r̂T/S(kλl) will alternate in sign as n increases and diminish in amplitude
only very slowly. This phenomenon is particularly pronounced in the x-
neighborhoods of points of the discontinuity either in the initial values or
between boundary and intial values.

The real coefficients of r̂T/S would clearly be free of unwanted oscillations if
0 < r̂T/S < 1 and r̂T/S(kλl)→ 0 monotonically as kλl increase in magnitude.
The (0, 1) Padé Approximant

r̂0/1 =
1

1− kλl
, λl real negative would clearly have this property. This

corresponds to implicit (backwards) Euler.

If |r̂T/S(kλℓ)| < 1 for l = 1, · · ·M − 1 we say the scheme is L0 stable

For Crank-Nicholson r̂1/1(−z) =
1− 1

2
z

1 + 1
2
z

=
2/z − 1

2/z + 1

|r̂1/1(−z)| < 1 ∀z > 0 but r̂1/1(−z)→ −1 as z →∞

∴ CN is A− stable.

In order to avoid unwanted oscillations one can show that it is sufficient
for cm−1φm−1 to decay to zero faster than the lowest component c1φ1. This
implies that
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k

h
<
x

π

see Lawson, Morris (1978) J Num Anal SIAM 15, pp 1212-25.

0.6 HIGHER-ORDER EVOLUTION EQUA-

TIONS AND SPLIT-STEP METHODS

We mean higher-order equations in time. The most common are 2nd order
equations. Example:

Utt − a2Uxx = 0

the wave-equation, which admits a solution composed of a right-going and
left-going wave. It belongs to the more general 2-order hyperbolic family of
equations

Utt + 2bUtx = a2Uxx + cUx + dUt + eU + f(t, x)where b2 < a2

Take





Utt − a2Uxx = 0
U(0, x) = U0(x)
Ut(0, x) = U1(x)

has a general solution

U(x, t) =
1

2

[
U0(x− at) + U0(x+ at)

]
+

1

2a

∫ x+at

x−at
U1(y)dy

As you can see, the solution is composed of a left-going and right-going wave.
The above problem can also be cast as a system of equations:

Example

On −1 ≤ x ≤ 1 t ≥ 0

Take Utt = Uxx. It is equivalent to solving
{
Ut + Vx = 0
Vt + Ux = 0 on 0 ≤ x ≤ 1, t ≥ 0
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So we can let V = (u, v)T and solve

∂V

∂t
+ A

∂V

∂x
= 0 where A is diagonalizable and has only real e’values

2

Example Another higher-order equation which appears with some regular-
ity: The Euler-Bernouilli Equation Utt = −b2Uxxxx also has a general solution
composed of 2 basic solutions. This equation is neither parabolic or hyper-
bolic . . . the solution does not become smoother as t → ∞, like parabolic
equations, nor does the solution have finite speed of propagation as it does
for hyperbolic equations.

2

We will not consider in detail the general solution of higher-in-time PDE’s.
Merely, we indicate the general technique for their solution. A sensible tech-
nique is to turn the 2nd-order (or higher order) equation into a system of 1st-
order equations, and then, after projecting or discretizing in space, use ODE
theory to find the best time integration algorithm for the resulting problem.
Caution: Make sure that you engineer the eventual linear-algebraic problem
in a compact way. If you use the above trick you will get very large and
sparse matrices with large bandwidths. You can most likely turn the sparse
large band width matrix problem into a sparse small bandwidth problem
using careful computer engineering practices. We’ll see how this is done in a
number of examples considered in this section and in the Elliptic Equation
Section.

Splitting and ADI. Nonlinear Problems and Problems in Several
Space Dimensions

Splitting techniques can be used to efficiently solve certain nonlinear evo-
lution problems and equations in several space dimensions. Consider the
following example:

∂U

∂t
= ∇(a∇U) + f 0 ≤ x, y ≤ 1

t > 0

a = a(x, y) is bounded in [0, 1]× [0, 1]
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For simplicity, assume that the grid spacing in x and y is the same: define
such grid spacing by ∆x. A naive discretization in space leads to

u′k,ℓ =
1

(∆x)2

[
ak− 1

2
,ℓuk−1,ℓ + ak,l− 1

2
uk,ℓ−1 + ak+ 1

2
,ℓuk+1,ℓak,ℓ+ 1

2
ukℓ+1

−
(
ak− 1

2
,ℓ + ak,ℓ− 1

2
+ ak+ 1

2
,ℓu+ ak,ℓ+ 1

2

)
uk,ℓ

]
+ pk,ℓ + fk,ℓ

with k, ℓ = 1 . . . d

and u′ ≡ ∂

∂t
u

with k, ℓ = 1 . . . d

p and f are the boundary and forcing term contributions, assumed to be
dependent of time. Assume they are 0 for now. In this case the above
equation is of the form

(165) u′ =
1

∆x
(Bx +By)u t ≥ 0, u(0) given

Bx and By are d2×d2 matrices approximating differential operators in x and
y.

By is a block-diagonal matrix and its diagonal is constructed from the tri-
diagonal d× d matrices:




−
(
b 1

2
+ b 3

2

)
b 3

2
0 · · · 0

b 3

2
−
(
b 3

2
+ b 5

2

)
b 5

2
0 · · · 0

:
. . . . . . . . . :

0 0 bd− 3

2
−
(
bd− 3

2
+ bd− 1

2

)
bd− 1

2

0 · · · 0 bd− 1

2
−
(
bd− 1

2
+ bd+ 1

2

)




where bℓ = ak,ℓ k = 1, 2, · · · d

Bx contains all remaining terms.

Its sparsity pattern is block-tridiagonal provided the grid is ordered by rows
rather than by columns. Any other ordering will lead to a sparse but large
bandwidth system.
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The formal solution of (165) is

un+1 = eµ(Bx+By)un n ≥ 0

Now we use a Padé approximant to discretize the matrix operators: for
example using r̂1/1 to approximate the exponential operator, leads to

un+1 =
[
I − 1

2
µ(Bx +By)

]−1[
I +

1

2
µ(Bx +By)

]
un(166)

(CrankNicholson in 2D)

The following identity is true for matrices:

(167) et(Q+S) = etQetS t ≥ 0

ONLY IF Q and S COMMUTE. Q and S are square and of equal dimension.
Assume they do, then:

un+1 = r̂1/1(µBx)r̂1/1(µBy)u
n(168)

=

(
I − 1

2
µBx

)−1

︸ ︷︷ ︸
I

(I +
1

2
µBx)(I −

1

2
µBy)

(
I +

1

2
µBy

)

︸ ︷︷ ︸
II

un

here n ≥ 0

The advantage of solving (168) over (166) is that inspite of having to solve 2

linear systems at each time step, with I − 1

2
µBy tridiagonal, and I − 1

2
µBx

tridiagonal is that it can solve (168) in O(d2) operations!

Identity (167) would be true in this case if a = 1. In general, the identity is
only approximately true:

etQetS − et(Q+S) = (I + tQ+
1

2
t2Q2 + · · · )(I + tS +

1

2
t2S2 + · · · )

−
{
I + t(Q+ S) +

t2

2
(Q+ S)2 + · · ·

}
=

1

2
t2[Q,S] +O(t3)

where [Q,S] ≡ QS − SQ the cummutator

∴ if [Bx, By] 6= 0

then eµBxeµBy − eu(Bx+By) = 0(µ2)
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if µ is sufficiently small, the approximation is fruitful.

Exercise

Show that “Strang Splitting”

eµ(Bx+By) ≈ e
1

2
µBxeµBye

1

2
µBx +O(µ3)

2

What to do if boundary conditions and/or forcing non-zero?

Take

u′ =
1

(∆x)2
(Bx +By)u + h(t), t ≥ 0

u(0) given

then

un+1 = eµ(Bx+By)un + ∆t
∫ 1

0
e(1−τ)µ(Bx+By)h ((n+ τ)∆t) dτ

n ≥ 0, and replace integral by trapezoidal rule:

un+1 = eµ(Bx+By)
[
un + 1

2
∆th(n∆t)

]
+ 1

2
∆th ((n+ 1)∆t)

Example Can use the split-step to efficiently solve the Nonlinear Schrodinger
Equation (NLS). First, we use r̂1/1 since it is a unitary approximation and
commutes with the Schrodinger operator. This is important in quantum
mechanics.

Take
ut = i∇2u+ iσ|u|2u u(x, y, t) ∈ C

Let L1 = i∇2 L2u = iσ|u|2u. Here, ∇2 = ∂xx + ∂yy, in two space dimen-
sions.

1. Advance linear part of NLS

ut = i∇2u,
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i.e. using L1 and Fourier Transform, so that the kth spectral component
advances as

ûk

(
t+

∆t

2

)
= e−ik

2 ∆t
2 ûk(t)

using an FFT. Then take inverse FFT to obtain a quantity called
ū (t+ ∆t/2).

2. To propagate under L2, solve

¯̄ut = iσ|ū|2ū

which has an exact solution since |u|2 is conserved. The solution is

¯̄u(t + ∆t) = eiσ
∣∣∣ū
(
t +

∆t

2

) ∣∣∣
2

∆tū

(
t +

∆t

2

)
.

3. The final stage is another half-step propagation under L1.

ûk(t+ ∆t) = e−ik
2 ∆t

2 ˆ̄̄uk(t + ∆t).

then inverse FFT of ûk gives final “solution” after a single time step.
Method requires 4 FFT’s and 1 experimentation/time step and is 0(∆t3)
accurate. It is expensive if you do not use FFT’s. See Tappert for more
details.

2

ADI (Alternating Implicit Direction) Methods

A splitting method. Take

Ut = b1Uxx + b2Uyy

on a unit square.

Let A1U = b1Uxx A2U = b2Uyy

then Ut = A1U + A2U

as before, supposing we used r̂1/1, with k ≡ time step:
(
I − k

2
A1,−

k

2
A2

)
un+1 =

(
I +

k

2
A1 +

k

2
A2

)
un +O(b3)

198



Since (1± a1)(1± a2) = 1± a1 ± a2 + a1a2

we add
k2A1A2

4
un+1 to both sides

(
I − k

2
A1 −

k

2
A2 +

k2

4
A1A2

)
un+1 =

(
I +

k

2
A1 +

k

2
A2 +

k2

4
A1A2

)
un +

k2

4
A1A2(u

n+1−un) +O(k3)

which can be factored
(
I − k

2
A1

)(
I − k

2
A2

)
un+1 =

(
I +

k

2
A1

)
+

(
I +

k

2
A2

)
un+

k2

4
A1A2 (un+1 − un)︸ ︷︷ ︸

O(k)

O(k3)︸ ︷︷ ︸
0(k3)

If A1 and A2 are discretized using the 2nd order stencil, we obtain tridiagonal
matrices that are sparse and easily solved. Let A1h and A2h be 2nd order
approximations. Then

(
I − k

2
A1h

)(
I − k

2
A2h

)
un+1 =

(
I +

k

2
A1h

)
(I +

k

2
∆2h)u

n

+ O(k3) +O(kh2)

or

(169)

(
I − k

2
A1h

)(
I − k

2
A2h

)
un+ 1

2 =

(
I +

k

2
A1h

)(
I +

k

2
A2h

)
un

The Peaceman-Ratchford Algorithm to solve (169)





(
I − k

2
A1h

)
ũn+ 1

2 =
(
I + k

2
A2h

)
un(

I − k
2
A2h

)
un+1 =

(
I + h

2
A1h

)
ũn+ 1

2

(unconditionally stable).

And we can see why it is called ADI · · ·

Another algorithm to solve (169):
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Douglas-Rachford Algorithm: (1, 2) scheme, unconditionally stable.





(
I − k

2
A1h

)
ũn+ 1

2 =
(
I + k

2
A2h

)
un(

I − k
2
A2h

)
un+ 1

2 = ũn+ 1

2 − kA2hu
n

(unconditionally stable).

Implementation Comments:

1. ADI schemes require intermediate values on the boundary. The approx-
imation must be chosen so that no instabilities are introduced. Start
with something simple.

2. The code can be made very fast if the row-column switching discussed
previously is implemented.

3. Higher-order matrix representations or non-sparse representations may
require an iterative technique for solution: for most cases an SOR or
Conjugate Gradient (if symmetric) are quite efficient.

2

0.7 ELLIPTIC EQUATIONS

Brief overview Refer to Figure 30 Archetypical Equation in 2D:

∇2U = f(x, y) in a domain Ω(x, y).

with ∇2 ≡ ∂xx + ∂yy

is called Poisson’s Equation. If f = 0 we call it Laplace’s equation. The solu-
tions to Laplace’s equations are called harmonic functions and are intimately
tied to the theory of complex analysis.

Boundary Conditions:

(1) (field specified at boundary) Dirchlet: U = b1 on ∂Ω
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y

x

n

δΩ

Ω

Figure 30: Domain of definition for Poisson’s Problem in 2 dimensions. The
n̂ indicates the convention on the unit normal to the boundary ∂Ω.

(2) Neumann:
∂U

∂n
≡ n̂ · ∇U = b2 on ∂Ω

(3) Robin: mix of the two above:
∂U

∂n
+ αU = b3 on ∂Ω. Only 1 boundary

condition may be specified on ∂Ω. But can have Neumann, say, for one
portion of ∂Ω and Dirichlet for the other, for example.

Only 1 boundary condition may be specified on ∂Ω. But can have Neumann,
say, for one portion of ∂Ω and Dirichlet for the other, for example.

Physically: Poisson equation describes many things. For example, the steady
state-temperatue distribution of an object occupying Ω, with heat sources
and sinks represented by f . The Dirichlet boundary conditions represent
the situation when the temperature is specified at boundary and Naumann
would be if the flux of temperature is specified at boundary. In particular, if
∂U

∂n
= 0|∂Ω we say we have a perfect insulator boundary.

In order for solution to exist, if Newmann B.C. are specified, is the data must
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satisfy the “integrability” condition:

∫ ∫

Ω

fdV =

∫

∂Ω

b2ds

(to prove: use divergence theorem).

General Quasi-linear 2nd-order elliptic in 2D has the form:

a(x, y)Uxx + 2b(x, y)Uxy + c(x, y)Uyy + d(x, y, U, Ux, Uy) = f(x, y)

with a, c > 0 b2 < ac

A 1st-order elliptic equation system example:

{
Ux − Vy = 0 “Cauchy-Riemann” equations
Uy + Vx = 0

example of 4th order

∇4U = f “Biharmonic Equation.”

An essential feature of elliptic equation solutions is that they are smoother
than the data. For example U has 2 more derivatives then f in the Poisson
equation. 4 more than f in biharmonic equation. Solutions to Laplace and
Cauchy-Riemann Eqs are infinitely differentiable.

For the general 2nd-order linear constant coefficient elliptic equations, the
following “regularity estimate” can be proved:

||U ||2s+2 ≤ Cs
(
||f ||2s + ||U ||20

)

where
|| · ||2s ≡

∑

s1+s2≤s
||∂s1x ∂s2y · ||2

i.e. if solution exists and is finite in L2, i.e. ||U ||0 finite and that f has all
derivatives of order up to s in L2(R

2)⇒ U has s+ 2 in L2(R2).

The solution of the elliptic equation is more differentiable than the data and
the increase in differentiability = order of equation.
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There is an “interior regularity estimate” as well. Suppose Ω1 ∈ Ω whose
boundary is wholly contained in Ω. Then

||U ||2s+2,Ω1
≤ Cs(Ω,Ω1)(||f ||2s,Ω + ||U ||20,Ω)

For the non-constant coefficient case, we require that coefficients be defined
and bounded, and very similar estimates are obtained.

Maximum Principles

These are very important and useful tools in analysis, here, restricted to 2nd-
order elliptic equations, although they exist for higher order elliptic equations
as well. The 2nd derivative gives information on a functions’ extrema ∴

maximum principles are useful tools in the analysis of solutions of 2nd -order
elliptic equations. Two theorems:

I. Theorem (Max Value) let Lφ = aφxx+2bφxy+cφyy , a, c > 0 and b2 < ac
i.e. L is an elliptic operator. If U satisfies LU ≥ 0 on a bounded domain
Ω⇒ U has its maximum on ∂Ω.

Remark: In 1D, recall that if U ′′ > 0 on some closed interval in x ⇒ max
value U is at interval ends (convince yourself).

II. Theorem (Max/Min): If elliptic equation

aUxx + 2bUxy + cUyy + d1Ux + d2Uy + eU = 0

holds on Ω a, c > 0 , e ≤ 0 ⇒ U(x, y) cannot have a positive local
maximum or a negative local minimum in interior of Ω.

Proof (from Strikwerda): Prove only I when LU > 0 and II when e < 0.

Cases when LU ≥ 0 and e ≤ 0 take a little more effort. Assume U ∈ C3

I: U ∈ C3 has local max at (x0, y0)⇒ gradient of U at(x0, y0)

Ux(x0, y0) = Uy(x0, y0) = 0

using Taylor’s with U0
xx ≡ Uxx(x0, y0), etc. · · ·

U(x0 + ∆x, y0 + ∆y) = U(x0, y0) +
1

2

(
∆x2U0

xx + 2∆x∆yU0
xy + ∆y2U0

yy

)

+ O
(
max(∆x,∆y)3

)
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Since U(x0 + ∆x, y0 + ∆y) ≤ U(x0, y0) for sufficient small ∆x and ∆y then

∆x2U0
xx + 2∆x∆yU

0
xy + 0y2U0

yy ≤ 0

Since expression is homogeneous of degree 2 in ∆x and ∆y

(170) α2U0
xx + 2αβU0

xy + β2U0
yy ≤ 0

∀ real α, β.

Now, prove I for LU > 0. Apply (170) twice. First with α =
√
a0 β =

b0/
√
a0, and then with α = 0 and β2 = C0 − (b0)2/a0, we have

LU = a0U0
xx + 2b0U0

xy + c0yy

=
(√

a0
)2

U0
xx + 2

√
a0

(
b0√
a0

)
U0
xy +

(
b0√
c0

)2

U0
yy +

(
c0 − (b0)2

a0

)
U0
yy ≤ 0

Since this contradicts assumption that LU > 0⇒ theorem I is proved.

Proof of Theorem II: only when e(x, y) < 0 proof: From Theorem I if U has
maximum at (x0, y0) then LU ≤ 0 ∴

−LU(x0, y0) = e(x0, y0)U(x0, y0) ≥ 0

Since e < 0 ⇒ U(x0, y0) ≤ 0 at an interior local maximum. Similarly by
considering −U(x0, y) can show that U is not negative at a local minimum.
2

Some uses:

(1) Physical: theorems state that hottest and coldest temps for steady
temperature distribution occur at boundaries.

(2) Mathematical: Can use principles to prove uniqueness of solutions to
many elliptic equations.

Comments on Boundary Conditions for elliptic equations: Look at Poisson
only and consider

U = b1 on dΩ Dirichlet
∂U

∂n
= b2 on dΩ Neumann

∂U

∂U
+ αU = b3 on dΩ Robin
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if ∂Ω is smooth, a unique solution exists with dirichlet boundary condition. It
also exists for Neumann, if integrability condition is satisfied (note: solution
is unique, to within an additive constant).

Some general remarks on local behavior:

(1) If Dirichlet is enforced along smooth portion of boundary ⇒ normal
derivative at ∂Ω will be as well behaved as the derivative of the bound-
ary data in the direction of boundary. If boundary data is discontinuous
⇒ normal derivative of solution will have unboundedness of disconti-
nuities.

(2) If either Neumann or Robin are enforced at dΩ⇒ solution differentiable
and 1st derivative as well behaved as the boundary data function.

Serious difficulty occurs at points on boundary where boundary con-
dition change from Dirichlet to Newmann or Robin type ⇒ one gets
unbounded derivatives for u at these points.

(3) Similar difficulties arise in reentrant corners: where local angle is greater
than 180◦, as measured from inside: second derivative may be un-
bounded, although solution and 1st derivative bounded (see Figure 31).

In summary: When boundary conditions change type, or when bound-
ary is not smooth, expect derivatives of solution to have unbondedness.

0.7.1 NUMERICAL METHODS FOR THE SOLUTION
OF THE POISSON EQUATION

We consider here the solution of the most ubiquitous elliptic equations, the
Poisson Equation. One method that will not be given consideration is FEM,
the reason being that time constraints will not permit us to do so. We’ll
consider instead

1) FD methods

{
5-point
9-point

}
for 2D problem
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x

y
>180

o

Figure 31: Domain with reentrant corner.

2) Multigrid method → we’ll cover only the basics

3) Fast Poisson-Solvers.

We assume that students will have a background in direct and iterative meth-
ods for the solution of linear equations and working knowledge of the FFT
(See FFT portion of Hw 8..

The 5 and 9-Point Finite Difference Scheme

We limit ourselves to the 2-D Poisson equation

∇2U = f (x, y) ∈ Ω

∇2 =
∂2

∂x2
+

∂2

∂y2

f = f(x, y)is a known function

and domain Ω ∈ R2 is bounded, open, connected and has a piecewise smooth
boundary ∂Ω.
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x

y

Figure 32: Picture of Ω with Ω∆x indicated. Solid circles indicate “inte-
rior” points, hollow circle are “near-boundary” points, filled squares indicate
“boundary” points.

Take an arbitrary domain and grid using ∆x spacing in BOTH x and y
direction. The domain grid is ≡ Ω∆x. Gridding will aligned parallel to
the x, y coordinate system. The grid is depicted in Figure 32 We need to
specify boundary conditions. Consider here Dirichlet boundary condition,
for concreteness:

U(x, y) = φ(x, y) for (x, y) ∈ ∂Ω

Take Uk,l
∆ ≡ U(x0 + k∆x, y0 + l∆x), the grid function. We approximate ∇2

operator acting on the field by center differences to O(∆x2) : the 5-point
scheme is thus defined as

(171)
1

∆x2

(
δ2
x + δ2

y

)
uk,l = fk,l

where uk,l = Uk,l
∆ +O(∆x2), an approximation to the grid function.

fk,l ≡ f(x0 + k∆x, y0 + l∆x)

(171) is written as

(172) uk−1,l + uk+1,l + uk,1−l + uk,l+1 − 4uk,l = (∆x)2fk,l
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computational cell, molecule, or stencil

Of course Ω∆x is comprised of interior, boundary, and near-boundary points.
(172) approximates U∆x on the interior points. No finite difference approx-
imation is needed for the boundary points. The remaining points, the near
boundary points require a special approach since the computational stencil
in (172) is not universally applicable. We’ll defer discussion of the near-
boundary point issue till later. Suppose all values of uk,l are either members
of the set of interior or boundary points. Boundary values are known. Inte-
rior points are unknown and each is a linear combination defined by (172),
i.e. by its nearest neighbors:

(172) can be written as the linear algebraic system of equations

(173) Au = b (exercise, show this)

b includes (∆x)2fk,l and contributions from boundary values.

So we ask some basic questions about the resulting linear algebraic system:

(1) Is the linear system nonsingular? ⇒ finite difference solution u ≡
(uk,l)k,l,interior integers exists and is unique, if so.

(2) Suppose u exists and is unique. Does u → U∆ as ∇x → 0, and what
is the magnitude of the error?

(3) What efficient methods should be used to solve the linear system? This
is crucial since likely to be a very large number of equations.

Take uk,l and arrange it into a 1-D vector of size m2, say. Note that con-
struction of (173) is not uniquely structured: there are (m2)! ways to arrange
it.

Lemma

The matrix A in (172) is symmetric and the set of its eigenvalues is

σ(A) = {λα,β : α, β = 1, 2, . . .m}
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p1 p2 p3

p4

p7

p5

p8
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p9

Figure 33: Unit rectangle, gridded with ∆x = 1 and m = 4. Points labeled
lexicographically.

where

λα,β = −4

{
sin2

[
απ

2(m+ 1)

]
+ sin2

[
βπ

2(m+ 1)

]}
where α, β = 1, 2, · · ·m.

Proof: One can prove symmetry by examinig the elements of the matrix in
a general case. For us it would be more instructive to consider an example
and from it see the symmetry: take ∇2U = 0 and use stencil with m = 3.
We’ll ignore specific boundaries. Take a domain that’s a rectangle and let
∆x = 1. The 5-point approximation is then

uk−1,l + uk+1,l + uk,l−1 + uk,l+1 − 4uk,l = 0.

Label elements “lexicographically”, as in the Figure 33

Let wi ≡ u(Pi) so that wi = uk,l and Pi ≡ (xk, yl) where k = 1, 2, . . . n and
l = 1, 2 . . .m. Finally, set i = k + (m− l)n so that the lexicographic label i
is consistent with the position label k, l. Then, at each node the equations
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are:

P1 : 4w1 − w2 − w4 = u0,3 + u1,4

P2 : 4w2 − w3 − w1 − w5 = u2,4

P3 : 4w3 − w2 − w6− = u4,3 + u3,4

P4 : 4w4 − w5 − w1 − w2 = u0,2

P5 : 4w5 − w6 − w4 − w2 − w8 = 0

P6 : 4w6 − w3 − w3 − w9 = u4,2

P7 : 4w7 − w8 − w4 = u0,1 + u1,0

P8 : 4w8 − w9 − w7 − w5 = u2,0

P9 : 4w9 − w8 − w6 = u3,0 + u4,1

Why go through this trouble?? This generates a BANDED MATRIX Of
bandwidth = 2n !! ∴ MUST USE THIS ORDERING FOR LARGE SYS-
TEMS. As an exercise, construct the matrix problem using any other ar-
rangement and compare the computational characteristics of the resulting
matrix against the one we just worked out. So the matrix A is





4 -1 0 -1 0 0 0 0 0
-1 4 -1 0 -1 0 0 0 0
0 -1 4 0 0 -1 0 0 0
-1 0 0 4 -1 0 -1 0 0
0 -1 0 -1 4 -1 0 -1 0
0 0 -1 0 -1 4 0 0 -1
0 0 0 -1 0 0 4 -1 0
0 0 0 0 -1 0 -1 4 -1
0 0 0 0 0 -1 0 -1 4





and the resulting system to solve is

Aw = b

and b contains f contributions as well as boundary contributions. So we
see it’s symmetric. One can show this is a general characteristic of the
lexicographic arrangement for this PDE and this computational stencil.

2

Eigenvalues (general case): eigenvalues of A are independent of how A is
formed → symmetric perturbations conserve eigenvalues.
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The eigenvalues problem, in terms of the original values, is

(174) uk−1,l + uk+1,l + uk,l−1 + uk,l+1 − 4uk,l = λuk,l k, l = 1, 2 . . .m

where λ is an eigenvalue. This is a homogeneous equation, which is further
constrained to have eigenfunctions such that uk,0 = uk,m+1 = u0,1 = um+1,l =
0 by the Dirichlet boundary conditions.

Given α, β ∈ {1, 2, . . .m} we have eigenfunctions

uk,l = sin

(
kαπ

m+ 1

)
sin

(
lβπ

m+ 1

)
k, l = 0, 1 . . .m+ 1

which automatically satisfy boundary conditions.

Why this form? Check PDE references on harmonic functions and their
connection to the equation ∇2U = f .

Substituting uk,l into (174) and exploiting identity sin(φ−ψ) + sin(φ+ψ) =
2 sinφ we obtain λ = λα,β

Corollary: The matrix A is negative definite and, a fortiori, nonsingular.

Proof: Already established that A is symmetric. Previous lemma showed
that eigenvalues are negative and distinct ⇒ nonsingular.

(Recall that all eigenvalues of a symmetric matrix are real, all eigenvalues of a
skew-symmetric matrix are purely imaginary, all eigenvalues of a general real
matrix are either real or form complex-conjugate pairs. Also, if all eigenvalues
of symmetric matrix > 0 ⇒ matrix is positive definite. If all eigenvalues of
symmetric matrix < 0⇒ matrix is negative definite.)

2

Remarks:

• U = sin(απx) sin(βπy) is the general solution of ∇U = λU on Ω = a
unit square in x and y, with U = 0 on ∂Ω. α, β are positive integers and

λ = −(α2 +β2)π. If we sample U on a grid of points

{
k

m+ 1
,

l

m+ 1

}

for α, β = 1, 2, · · ·m, we obtain the five-point discretization formula
for ∇2 on Ω = unit square with (O) boundary condition on ∂Ω and is
finite dimensional, of course.
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• (∆x)−2λα,β is a good approximation of −(α2+β2) is provided α, β small
compared m: expanding sin2 θ in a series and using (m+ 1)∆x = 1

λα,β
(∆x)2

= −4

({[
απ

2(m+ 1)

]4

+ · · ·
}

+

{[
βπ

2(m+ 1)

]4

+ · · ·
})

= −(α2 + β2)π +
1

12
(α4 + β4)π4(∆x)2 +O((∆x)4)

Theorem (Approximation error):

let ek,l = U∆x − uk,l k, l = 0, 1, . . .m+ 1

let e denote the vector after lexicographic rearrangement

in which approx is posed in terms of u.

Subject to f being sufficiently smooth, ∃c > 0 a number independent of ∆x
such that

||e|| ≤ c(∆x)2 ∆x→ 0

where || · || is the Euclidean norm
(
i.e.||x|| = [〈x,x〉] 1

2

)
or l2 norm.

Proof: Homework exercise (hint: since A is symmetric, the l2 norm = spectral
radius).

2

Near-Boundary Points:

Previous analysis works on rectangular domains, L- shaped domains, etc,
provided ratios of all sides are rational numbers. In general, however, we
expect near-boundary points in which the 5-point formula cannot be imple-
mented. Without loss of generality suppose we seek ∇2 approximation at
point P in Figure 34

Let’s ignore y-dependence for now. Given some z(x), approximate z′′ at P ∼
x0 as linear combination of the values of z at P,Q ∼ x0−∆x, T ∼ x0 + τ∆x.
Expanding z about x0 in Taylor series,

1

(∆x)2

[
2

τ + 1
z(x0 −∆x)− 2

τ
z(x0) +

2

τ(τ + 1)
x(x0 + τ∆x)

]

= z′′(x0) +
1

2
(τ − 1)z′′(x0)∆x+O((∆x)2)
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Figure 34: Graphical construction of data at near-boundary point.

unless τ = 1, where everything reduces to central differences, error is just
O(∆x). To get O(∆x2) error, we add the function value at V ≈ x0 − 2∆x
to linear combination, so that now

z′′(x0) =
1

(∆x)2

[
τ − 1

τ + 2
z(x0 − 2∆x)− 2(2− τ)

τ + 1
z(x0 −∆x)− 3− τ

τ
z(x0)

+
6

τ(t+ 1)(τ + 2)
z(x0 + ∆x)

]
+O(∆x)2).

A good approximation to ∆2U at P ∴ involves 6 points: P,Q,R, S, T, V . As-
suming P = (k0, l0) in our coordinate system, we get the linear combination

[
τ−1
τ+2

uk0−2,l0 + 2(2−τ)
τ+1

uk◦−1,l◦ + 6
τ(τ+1)(τ+2)

uk◦+τ,l◦ + uk◦,l0−1

+uk◦,l◦+1 − 3+τ
τ
uk◦,l◦ = ∆x2fk◦,l◦

]

where uk◦+τ,l◦ is the value of U at T , given by boundary conditions.

Note: if τ = 1, we get 5-point formula and P is an internal point, as it should
be.

A similar treatment applies in the y-direction . . . note that ∆x should be
small for O(∆x2) to be small.
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-1/12 -1/124/34/3 -5

Figure 35: Computational Stencil for the differential operator, using simple
9-point formula.

Higher-Order Finite Difference Methods

Since the 5-point formula gives a O(∆x2) method, one wonders if it is worth
going to higher order: take ∇2U = f and truncate the finite difference
approximation using center differences at the next order:

1

(∆x)2

[
δ2
x + δ2

y −
1

12
(δ4
x + δ4

y)

]
uk,l = fk,l

The resulting computational cell for the differential operator will be as de-
picted in Figure 35.

Although error O(∆x4), this is not popular method: renders too many points
as near-boundary ones (even on square grid!) requiring laborious treatment.
More problematic, however, it gives systems that are considerably more ex-
pensive to solve!!

ALTERNATIVELY: The “Nine-Point Formula”:

1

(∆)x2

(
δ2
x + δ2

y +
1

6
δ2
xδ

2
y

)
uk,l = fk,l
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Figure 36: Computational Stencil for the differential operator, using proper
9-point formula.

Computational Cell is given in Figure 36 In homework you will derive the
truncation error to be

(175)
1

∆x2
(δ2
x + δ2

y +
1

6
δ2
xδ

2
y)φ−∇2φ =

1

12
(∆x2)∇4φ+O(∆x2)

i.e. same as 5-point!! So apparently, nothing is gained by adding 4 other
nearest neighbor points.

In homework you will see that computation with 5-point formula is consistent
with error decaying proportionally with O(∆x2). Will find, however, that for
9-point formula error decays O(∆x4), in spite of above error estimate result.

Why this discrepancy? Because truncation error estimate above was per-
formed on Laplace equation ∇2U = 0, not Poisson ∇2U = f .

From (175) the 9-point formula is an approximation O(∆x4) of the equation

(176)
[
∇2 +

1

12
(∆x)2∇4

]
U = f
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let L∆x ≡ I + 1
12

(∆x)2∇2

Note L−1
∆x exists for sufficiently small ∆x. Multiply (176) by L−1

∆x and let
f = 0⇒ get O(∆x4) error.

We can exploit this fact as follows: for (176) with f 6= 0, multiply both sides
by L−1

∆x (for ∆x sufficiently small)

(177) ∇2U = L−1
∆xf

is a Poisson equation for which the 9-point formula produces O(∆x4) error.
Not the equation we wanted to solve, but we can do the following:

let f̃(x, y) = L̃−1
∆xf = f(x, y) + 1

12
∇2f(x, y) +O(∆x4)

so we see that (177) differs from ∇2U = f by O(∆x4) terms ∴ it is a good
approximation to orignal problem!




So the “modified 9-point scheme” is

1
∆x2

(
δ2
x + δ2

y + 1
6
δ2
xδ

2
y

)
uk,l = [I + 1

12
(δ2
x + δ2

y)]fk,l

is O(∆x4)




This is an example of “Preconditioning”. It is a very powerful way to get
either a better truncation or a faster solution to linear systems with extra
computation that is minimal... See homework.

SOLVING THE RESULTING SYSTEM

Define the resulting system

(178) Au = b

Let’s look at the structure of A and from there decide what are some methods
for solving the linear system. For both the 5-point as well as the 9-point
formula it is clear that the matrices are symmetric and diagonally dominant.
For small sized problems, direct solution is fine. For large problems, the
fastest algorithm would have at its core a conjugate gradient iterative solve.

Let’s consider the 5-point formula in some detail. Schematically, the matrix
can be expressed in terms of smaller matrices:
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A =




C I 0 0
I C I 0

0
. . . . . . . . . 0

: I C I
0 0 I C




Where C is tridiagonal and I is the identity matrix, where

I =




1
1 0

. . .

0 1
1




and C =




−4 1 0
... 0

1 −4 1
. . .

...

0
. . . . . . . . . 0

:
. . . 1 −4 1

0
. . . 0 1 4




diags are all equal

A is said to be TST (Toeplitz Symmetric Tridiagonal), and each block is
itself TST.

See class notes from 475A for a review of solving (178). Direct Method: OK
for small matrices. Use a Cholesky factorization A = LLT . Such factoriza-
tion will take a time T which is roughly proportional to number to nonzero
elements in main diagonal. For sparse matrices, this is not too big a deal in
terms of storage.

Iterative Methods

Incomplete LU → splits A into the tridiagonal part and the rest. Iteration
is carried out on the tridiagonal part. Also called “line relaxation method.”
The method is of low cost and is easy, but not the fastest.

ILU FACTORIZATION (Incomplete LU)

Suppose you want to solve

(179) Av = b v ∈ R
n,b ∈ R

n A matrix is n× n

Recall:
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A linear one-step stationary scheme would lead to

(180) xk+1 = Txk + c x ∈ R
n

k is iteration index.

such that lim
k→∞

xk+1 = v

and xk+1 = tk(x
0,x1,x2 · · ·xk) k = 0, 1, 2, · · ·

tk = R
n × R

n × R
⋉

︸ ︷︷ ︸→ R
⋉ k = 0, 1, 2 · · ·

k(181)

Let’s go back to (179): suppose that A is in the form A = Ã − E where
the underlying LU factorization of Ã (nonsingular) can be done easily. For
example Ã may be bounded (or in the context of elliptic problems, TST).
Moreover assume E is small compared to Ã. Rewrite (179) as:

Ãv = Ev + b

which suggests the iterative scheme

(182) Ãxk+1 = Exk + b

This is the ILU (incomplete LU factorization). It requires a single LU (or
Cholesky if Ã symmetric) factorization, which can be reused at each iteration.

We can write (182) in the form of (180): let T = −Ã−1E and c = Ã−1b

∴ (I − T )A−1b = (I − Ã−1E)(Ã− E)b = Ã−1(Ã− E)(Ã− E)−1b

= Ã−1b = c

Of course, numerically, we solve the form given by (182) and not in the form
directly above.

2

The ILU iteration (182) is an example of “regular splitting.” More generally
A = P −N , where P is nonsingular matrix, and build

(183) Pxk+1 = Nxk + b k = 0, 1, 2 · · ·
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Where P is simple to solve (using LU or other means). Note that, formally,
T = P−1N = P−1(P − A) = I − P−1A and c = P−1b.

Theorem: Suppose both A and P + P T − A are symmetric and positive
definite. Then (183) converges.

Proof: See numerical linear algebra book. 2

Remarks What other techniques can we use? From the classical iterative
techniques we could use use Jacobi, Gauss-Seidel, SOR, Conjugate Gradient.
SOR would be a good choice since we can tune the relaxation parameter
and get speeds that exceed Jacobi and Gauss-Seidel, since we can easily
compute the spectral radius of the matrix problem that results from the
5-point scheme. Conjugate Gradient is the other logical choice. Later on
we’ll introduce another fast solver technique, call “Multi-grid” techniques.
Are there faster ways? One of the most important developments in linear
algebra in recent years has not been in the area of new methods for the
solution (although plenty of new idea and schemes have been developed)
but where significant strides are made is in algorithmic aspects of the solver
techniques: computer-science solutions to increase the speed or efficiency in
storage of general linear algebra solvers. See Demmel’s linear algebra book
for full details on the latest techniques.

FASTER ITERATIVE TECHNIQUES FOR POISSON PROBLEM

One method that clearly out performs SOR is ADI: let A = Ax+Ay where Ax
originates in the x-direction central difference and Ay originates in y-direction
central differences.

Assuming that Ãxk+1 = Exk + b k = 0, 1, 2, . . . represents an ILU decom-
position to the problem Ax = b, we can write

(Ay − 2I)xk+1 = −(Ax + 2I)xk + b k = 0, lim

column-wise line relaxation

(Ax − 2I)xk+1 = (Ay + 2I)xk + b k = 0, 1, 2, · · ·
row-wise line relaxation.

So generally, choose parameters α0, α1, · · · and iterate

ADI

{
(Ax − α2kI)x

2k+1 = −(Ay + α2k)x
2k + b

(Ay − α2k+1I)x
2k+2 = −(Ay + α2k+1)x

2k+1 + b k = 0, 1, · · ·
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The choice of {αk} that beats SOR is given in
[

Wachpress (1966) “Iterative Solution of Elliptic Equations . . .′′

Prentice-Hall. Also, see Demmel’s Linear Algebra book.

Another method (which is highly recommended) is the Conjugate gradient
method (see details in Math 475A notes) which is applicable to symmetric
positive definite A’s. It is very fast.

The conjugate gradient and the preconditioned congugate gradient methods
are widely available as mature code (see Netlib). These methods are part
of a family of methods called “Krylov Space Methods.” Other Krylov-space
methods worth knowing about are (GMRes) Generalized Minimal Residual
and bi-conjugate gradient methods.

There are other types of methods for the solution of the Poisson equation
and some of its close cousins: there’s “cyclic reduction and factorization,”
there is the very fast “Multipole Techniques.” We will feature two more
methods here, both are very powerful and are widely applicable. First we’ll
consider “FFT-Based Poisson Solvers” and then briefly talk about “Multigrid
Methods.”

Remarks As a general rule of thumb, if the problem you’re solving is very
large, you’ll have to resort to high performance solvers. But the first thing you
should do is decide whether you have a problem that’s big enough to warrant
looking at high performance algorithms...this includes foreseeing that in the
future you might look at big problems. Alternatively, suppose you have to
solve the same problem millions of times (well, many times), whether it is
small or large, you could save yourself time and storage by using a high
performance solver. In any event, it doesn’t hurt to be aware that these sort
of things exist and most likely are in the form of mature code that you can
adapt to your problem.

“FAST” POISSON SOLVER

These are fast, in the sense that if you use an FFT to do the Fourier compu-
tations, it is faster that the Discrete Fourier Transform (DFT). Competitive
in speed with ADI and SOR optimized. It proves useful, in any event, to
know how to use this technology because its applicable to other boundary
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value problems.

Motivations There are a number of reasons for visiting this problem:

• You get an idea of what is involved in solving problems in two-space
dimensions and of the importance of boundary data in fixing a solution.

• You see how advantageous it is, in many cases, to use analytical means
as much as possible to pose a problem for solution BEFORE actually
coding it up. In general, one should explore all possible means to ad-
vance a calculation by analytical means before resorting to numerics...of
course, this is not a theorem, but merely a rule of thumb.

• Following the lead in the last item, we could find that the problem posed
below can be solved exactly via analytical means (as are many of the
problems covered in this course). Nevertheless, we want to remind you
that in many instances, problems in several space dimensions can be
solved most easily numerically and analytically if you happen to choose
the right reference frame and/or coordinate system. In this instance
we’ll emphasize the issue of choosing the coordinate system, and in this
case, the choice is based on symmetries in the boundary geometry and
the type of PDE (consult an elementary PDE book, particularly, one
geared towards engineers).

• The reason for wanting to solve the disk problem is that we’ll get come
practice in solving PDE in coordinates other than Cartesian, and we’ll
show how the boundary conditions must be payed special attentions
to.

• We will also use this problem to introduce, albeit in an elementary way,
how spectral methods can be used numerically. Also, many books do
not emphasize the fact that numerical methods can often be combined,
a fact that is obvious later on, but sometimes not so obvious as a
beginning computational scientist.

We will solve the Helmholtz Equation

(184)
(
∇2 + κ2

)
U = g





g, real
k, real
u, real
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on a unit disk with domain D =
{
(x, y) ∈ R2 : x2 + y2 < 1

}

with boundary conditions

{
U(cos θ, sin θ) = φ(θ) 0 ≤ θ ≤ 2π
φ(0) = φ(2π) , Dirichlet boundary conditions

Remarks Note that (184), with k2 = 0, we get the Poisson Equation. The
Helmholtz Equation originates from the linear 2-way wave equation, where
the time dependence of the solution is assured time harmonic:

To see this, take the Wave Equation (with no forcing term, for simplicity)

(185)
1

c2
ψtt −∇2ψ = 0 c2 > 0 constant,

where c is the wave speed.

Substitute

(186) U(x, y) = ψe−iωt

where ω is the frequency of the wave, assumed constant. Let
ω

c
= κ be the

wavenumber, then the (186) solution to (185) is found by solving

(187) (κ2 +∇2)U = 0

When the problem is defined on a disk and a forcing term g is added to the
equation (187), we get (184).

Computational Grid

The symmetry of the problem leads us to try a change of coordinate system,

from Cartesian to polar: The mapping:





x = r cos θ
y = r sin θ
x2 + y2 = r2

Hence, in the polar coordinate system we obtain a square lattice D̃ associated
with D, the cylindrical domain via the mapping above. The square grid D̃
has four edges, denoted by ∂D̂. The two domains are illustrated in Figure
37.
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Figure 37: The Cartesian and Polar domains D and D̃, respectively

let U(r, θ) = U(r cos θ, r sin θ)

{
0 < r < 1
0 ≤ θ ≤ 2π

g(r, θ) = g(r cos θ, sin θ)

∇2 =
∂2

∂x2
+

∂2

∂y2
(cartesian)⇒ ∇2 =

∂2

∂r2
+

1

r

∂

∂θ
+

1

r2

∂2

∂θ2
(Polar)

∴ (184) in Polar Coordinates is:

(188) ∴

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
u+ κ2u = g

{
0 < r < 1
0 ≤ θ ≤ 2π

Boundary Conditions: on D we have Dirichlet condition on the edge of the
disk. Two other conditions are based on our expectation of the solution. For
example, we could demand that the solution be bounded at the center of the
disk and that it be periodic in θ.

D̃ has 4 edges for which we need 4 conditions, that is, on ∂D̃ : r = 1, 0 ≤
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θ ≤ 2π

the U(r cos θ, r sin θ) = φ(θ) gives

⇒ u(1, θ) = φ(θ) 0 ≤ θ ≤ 2π.

on 0 < r < 1 θ = 0, and 0 < r < 1, θ = 2π

u(r, 0) = u(r, 2π) 0 < r < 1 (Periodic)

Finally, we need a condition at r = 0, for 0 ≤ θ ≤ 2π. This whole line
corresponds to just a single point in D, namely x = 0, y = 0: the proce-
dure outlined in problem # 3 HW 9 is a general procedure for determining
the condition at the origin. Here we could impose the condition that u be
constant along the line r = 0. This implies that

∂u

∂θ
(0, θ) = 0 0 ≤ θ ≤ 2π

At this point, we have a well-posed problem. We solve (188) on D̃ subject to

u(1, θ) = φ 0 ≤ θ ≤ 2π
u(r, 0) = u(r, 2π) 0 < r < 1
∂u

∂θ
(0, θ) = 0 0 ≤ θ ≤ 2π

Remark: The coordinate transformation is not only a proper choice of the
coordinate system, preserving symmetrices of the solution: it also avoids
grid errors due to interpolation which would be required in the discretiza-
tion. Notice as well, that the coordinate system turned our problem into a
“separable” PDE (see elementary PDE book).

We can use finite differences to solve the problem and then use the mapping
to go from D̃ to D and thus obtain the approximate solution u(x, y). We
will use Fourier methods, combined with finite differences instead. Fourier
methods are particularly suited to the solution of L2 functions which are
periodic. In this case, the periodicity is in θ hence in the θ direction we’ll use
Fourier, and we’ll use finite differences for the radial direction The fastest
algorithm for a discrete Fourier transform is the FFT (a useful reference
for Fourier Methods is “The DFT” by the W. Briggs & V.E. Henson. The
reason we call this section “Fast Fourier Solver for the Poisson/Helmholtz
Equation” is because we’re using FFT’s rather than DFT’s. In this sense it
is fast.
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Since the solution is periodic in θ, we’ll apply the Fourier transform:

ûm(r) =
1

2π

∫ 2π

0

u(r, θ)e−imθdθ m ∈ Z

û is complex (in the implementation we could use a sine or cosine transform,
but we will use the complex transform, for simplicity and generality). The
goal is to convert the PDE into an infinite set of ODE’s for the Fourier
coefficients {ûm}∞

m=−∞.

It’s easy to deduce that

̂(∂u
∂r

)

u

= u′m(r) and

(̂
∂2u

∂r2

)

m

= û′′m(r) m ∈ Z

(̂
∂2u

∂θ2

)

m

=
1

2π

∫ 2π

0

∂2u

∂θ2
(r, θ)e−imθdθ =

1

2π

[
e−imθ

∂u(r, θ)

∂θ

∣∣∣
2π

0
+ im

∫ 2π

0

∂u(r, θ)

∂θ
e−imθdθ

]

=
im

2π

∫ 2π

0

∂u(r, θ)

∂θ
e−imθdθ =

=
im

2π

[
e−imθu(r, θ)

∣∣∣
2π

0
+ im

∫ 2π

0

u(r, θ)e−imθdθ

]
= −m2ûm(r)

So, we multiply (188) by e−imθ and integrate from 0 to 2π and divide by 2π.
Using orthoqonality, we obtain the set of ODE’s for the Fourier coefficients:

(189) û′′m +
1

r
û′m −

m2

r2
ûm + κ2ûm = ĝm for r ∈ (0, 1) m ∈ Z

We also transform the boundary conditions:

ûm(1) = φ̂m m ∈ Z

(Note that solution is already periodic in 2π by having used Fourier trans-

forms). Now we need to take care of the condition
∂

∂θ
u(0, θ) = 0:

Since u(r, θ) =
∞∑

m=−∞
ûm(r)eimθ 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π

differentiate with respect to θ and set r = 0:

i

∞∑

m=−∞
mûm(0)eimθ ≡ 0, 0 ≤ θ ≤ 2π
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Since the eimθ are linearly independent, for m ∈ Z ⇒ all coefficients must
vanish identically:

v̂m(0) = 0 m ∈ Z\{0}
This leaves us with just a single missing item of information, namely the
boundary condition for the zeroth harmonic.

Since u(r, θ) = U(r cos θ, r sin θ)

∴

∂u(0, θ)

∂r
= cos θ

∂U(0, 0)

dx
+ sin θ

∂U(0, 0)

∂y

∴ û′(0) =
1

2π

∫ 2π

0

∂u(0, θ)

∂r
dθ =

1

2π

∫ 2π

0

cos dθ
∂U(0, 0)

∂x
+

1

2π

∫ 2π

0

sin θ
∂U(0, 0)

∂y
= 0

Since ∫ 2π

0

cos θdθ =

∫ 2π

0

sin θdθ = 0 ∴

(190) u′(0) = 0

Now, we’re ready on the ODE part.

Remark: The key fact is that the fourier transform uncouples the harmonics.
We need to solve the ODE system and then use the “inverse” Fourier formula

u(r, θ) =
∞∑

m=−∞
ûm(r)eimθ

It turns out that (189) has an analytical solution in terms of Bessel functions.
More generally, we would use one of the boundary value techniques presented
in this course, i.e. finite differences, shooting method, FEM.

Exercise) Show that, by using center differences, the FD approximation
w(k∆r) = u(k∆r) +O(∆r2) is given by the solution of
(191)


(1− 1
2k

)ŵm,k−1 −
(
2 + κ2 + m2

k2

)
ŵm,k +

(
1 + 1

2k

)
ŵm,k+1 = (∆r)2ĝm,k

k = 1, 2, · · · d− 1 , m ∈ Z

with ∆r =
1

d
subject to ŵm,d = φ̂m m ∈ Z

ŵm,0 = 0 m ∈ Z\{0}
−5

4
ŵ0,0 +

3

2
ŵ0,1 −

1

4
ŵ0,2 = 0 (forward difference approx of (190))
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The outcome is a tridiagonal system for every m 6= 0 and an almost tridiag-
onal system for m = 0. Such systems can be efficiently solved by sparse LU
factorization.

Implementation comments: Of course, we need to truncate the infinite set of
ODE’s by a subset. Say

−M + 1 ≤ m ≤M

(the truncation error induced depends on how large M is. See Canutto,
Quarteroni, Hussaini, book on Spectral Methods). Provided φ and g are
smooth, good accuracy is attained and the error drops exponentially with
M !!

(1) Use an FFT, so pick M = 2n−1 n = 1, 2, 3, · · · transform g and φ to

get ĝ and φ̂
Pick d and solve (191) for ŵm,k for −M + 1 ≤ m ≤ M and k =
1, 2, · · · d− 1

(2) Then employ a d− 1 inverse FFT to produce w on a d× (2m) square
grid.

(3) find approximation of u on D by using the mapping on D̃.

Roughly, we need O(M log2M) ops for FFT in (186), O(dM) for LU solution
in FD solution in (186), plus O(dM log2M) for the reconstruction. This
compares very favorably with full finite difference methods.

0.7.2 Fundamentals of Multigrids Methods

Some good references: McCormick’s “Multilevel Methods for PDE’s” (SIAM)
and “Multigrid Tutorial” by W. Briggs (SIAM). These are very accessible and
inexpensive SIAM books. Here, we’ll follow Iserles rather closely.

A good software and information source for multigrid

Multigrid methods are nested techniques for the iterative solution of the
linear algebraic problem

Ax = b
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k

ln|| r ||

Figure 38: The logarithm of the norm of the residual as a function of the
iteration count k for Gauss-Seidel on the Poisson problem

and is a current active research area. Since they are fast, they are used
not only in the solution of PDE’s but also in applications related to image
processing, filtering, etc.

Suppose we want to solve the 5-point FD approximation of the Poisson equa-
tion using Gauss-Seidel. As we have discussed in 475A, the rate of con-
vergence of the iterative solution ρ(A), which in this case is approximately
1− π2/m2 for the m×m matrix A. This is an asymptotic result. In reality,
we’d see that ln ||rk||, where rk = Axk − b, will drop as shown in Figure 38

we see a severe drop in the first few iterates, followed by the linear rate
predicted by the asymptotic result. This is true for any m!!

Why? Because the Gauss Seidel acts as a “smoother,” altervating high wave
numbers faster than low wave numbers. Understanding why provides a tech-
nique for accelerating iterative schemes:

Subtract the 5-point equations

(192) uj−1,l + uj,l−1 + uj+1,l + uj,l+1 − 4uj,l = ∆x2fj,l j, l = 1, 2 . . .m
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from Gauss Seidel Scheme:

uk+1
j−1,l + uk+1

j,l−1 + ukj+1,l + ukj,l+1 − 4uk+1
j,l = ∆x2fj,l j, l = 1, 2, . . .m

to obtain(193)

(194) εk+1
j−1,l + εk+1

j,l−1 + εkj+1,l + εkj,l+1 − 4εk+1
j,l = 0 j, l = 1, 2 . . .m

where εkj,l ≡ ukj,l − uj,l is the error after k iterations at the (j, l) grid point.

Since we’re assuming Dirichlet boundary conditions uj,l and ukj,l are identical

at the boundary ⇒ εkj,l = 0 there.

Let

pk(θ, ψ) =
m∑

j=1

m∑

l=1

εkj,le
i(jθ+lψ), 0 ≤ θψ ≤ 2π

be the 2-D Fourier transform of the sequence {εkj,l}mj,l=1.

and denote the Euclidean Norm

|||g||| =
[

1

4π2

∫ π

−π

∫ π

−π
|g(θ, ψ)|2dθdψ

] 1

2

.

By Parseval’s Theorem, can show that

|||pk|||2 = ||εk||2

where ||y|| =
(

m∑

j=1

m∑

l=1

|yj,l|2
) 1

2

.

We wish to establish the rate of decay of residuals. Multiply (194) by ei(jθ+lψ)

and sum over j, l = 1, 2 . . .m

Since

m∑

j=1

m∑

k=−1

εj−1,le
i(jθ+lψ) =

m−1∑

j=0

m∑

l=1

εk+1
j,l e

i[(j+1)θ+lψ] = eiθpk(θ, ψ)

−ei(m+1)θ

m∑

l=1

εm,le
ilθ
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and applying similar algebra to other term in (194) we obtain

(4− eiθ − eiψ)pk+1(θ, ψ) = (e−iθ + e−iψ)pk(θ, ψ)

−
{
ei(m+1)θ

m∑

l=1

εk+1
m,l e

ilψ + ei(m+1)ψ

u∑

j=1

εk+1
jm eijθ

+
m∑

l=1

εk1,le
ilψ +

m∑

j=1

εkj−1e
ijθ

}

Now (4− eiθ − eiψ)pk+1(θ, ψ) ≈ (e−iθ + e−iψ)pk(θ, ψ) in general but the term
in curly brackets would have disappeared if we were considering periodic
boundary conditions. For Dirichlet, the justification is more subtle. We
could check a posteriori that it is indeed ok.

Define the local attenuation factor as

ρk(θ, ψ) =
∣∣∣ p

k+1(θ, ψ)

pk(θ, ψ)

for θ| ≤ π and |ψ| ≤ π,

then ρk(θ, ψ) ≈ ρ(θ, ψ) =
∣∣∣ e−iθ+e−iψ4−eiθ−eiψ

∣∣∣ |θ|, |ψ| ≤ π.

ρ̄ is independent of k.

In HW10 you will confirm graphically that when ρ̃ is restricted to the set

Π0 ≡
{
(θ, ψ) : 1

2
π ≤ max {|θ|, |ψ|} ≤ π

}
the function ρ̃ peaks at

1

2
, whereas

ρ̃ over Π ≡ {(θ, ψ) : |θ| ≤ π, |ψ| ≤ π} peaks at 1. In fact, you will show that

max
(θ,ψ)∈Π

ρ̃(θ, ψ) = ρ̃

(
π

2
, tan−1

(
3

4

))
=

1

2

∴ if we disregard non-oscillatory wave numbers, the amplitude of the error
is halved in each iteration!

∴ G-S attenuates highly oscillatory components much faster thus contribu-
tion of these vanishes quickly after a few iterations.

In the context of a continuum, all wavenumbers are supported. On a dis-
cretization of the continuum, a lattice or grid what is “highly oscillatory
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depends on the grid spacing. In fact, for a specific grid there are oscillations
that are not resolvable. Since what is meant by “high oscillations” is with re-
spect to each grid realization, that is, high oscillations are those components
with wavelengths that are comparable to the grid size, and the G-S iteration
attenuates rapidly “high oscillations” we could conceive of an algorithm in
which we go back and forth between coarse and fine meshes and iterate at
each level ONLY while attenuation rates are high, we can get a fast rate
of convergence for the residual by constructing a nesting sequence between
coarse and fine meshes.

Suppose that we coarsen a grid by taking out every second point, the outcome
being a grid on [0, 1] × [0, 1] but with ∆x replaced by 2∆x. The range of
former high frequencies Π0 is no longer visible on the coarse grid. The new
grid will have its own range of high frequencies on which G-S performs well:

Π1 =

{
(θ, ψ) :

1

4
π ≤ max {|θ|, |ψ|} ≤ 1

2
π

}

We could coarsen again and again and form a hierarchy of grids embedded
into each other, whose (grid-specific) high frequencies correspond, as far as
the fine grid is concerned, to the sets

Πs =
{
(θ, ψ) : 2−s−1π ≤ max {|θ|ψ|} ≤ 2−sπ

}

s = 1, 2, 3 · · · log2(m+ 1)

The sets Πs nest inside each other, as shown in Figure 39

The multigrid technique takes advantage of this fact, traveling up and down
the grid hierarchy, using G-S iterations to dampen the locally highly oscil-
latory components of the error (see Figure 40). We need to describe how
each coarsening or refinement step is performed, as well as to specify the
exact strategy of how to start, when to coarsen, when to refine and when to
terminate the whole process:

Refinement and Coarsening: Consider just 2 grids, find and coarse. Suppose
we wish to solve

Afxf = vf on a fine grid
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Figure 40: Schematic representation of the grid hierarchy
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perform a few G-S iteratives (smoothing out high frequencies), then

rf ≡ Afxf − vf is the residual.

To go to coarse grid, use a “restriction matrix” R

rc = Rrf

remember, at this point rf is constructed of low frequency components (rel-
ative to fine grid) ∴ makes sense to go on smoothing rc on coarser grid: let
vc ≡ −rc and solve

(195) Acxc = −rc

Ac is the coarse matrix, i.e. A restricted to coarse grid.

To ascend, suppose xc is approximate solution to (195) after a few iterations
we translate xc into the fine grid using a “Prolongation matrix” P?

(196) yf = Pxc

and update the old value of xf :

(197) xnew
f = xold

f + yf

Evaluating the residual rnew
f , under the assumption that xc is exact solution

of (195). Since

rnew
f = Afx

new
f −vf = Af (x

old
f + yf )− vf

then using (196) and (197):

rnew
f

= rold
f

+ Afyf = rold
f + AfPxc

∴ rnew
f = rold

f − AfPA−1
c rc.

Since rc = Rrf

rnew
f = (I− AfPA−1

c R)rold
f

∴ the sole contribution to the new residual comes from replacing a fine grid by
a coarser one. similar reasoning is valid even if xc is anapproximate solution
of course grid problem provided high freq’s have been smoothed out.
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Now we need to specify the Restriction and Prolongation Matrices:

A popular
{

Restriction and Prolongation matrix comes from “Full Weighting” :

It leads to R =
1

4
P T , which is very convenient.

let

wf = Pwc

wc =
(
wcj,l
)m
j,l=1

wf =
(
wfj,l

)2m+1

j,l=1

Full Weighting:

wcj,l =
1

4
wf2j,2l +

1

8

(
wf2j−1,2l + wf2j,2l−1t + wf2j+1,2l + wf2j,2l+1

)

+
1

16

(
wf2j−1,2l−1 + wf2j+1,2l−1 + wf2j−1,2l+1 + wf2j+1,2l+1

)
j, l = 1, 2, . . .m

Prolongation: use linear interpolation:

wf2j−1,2l−1 = wcj,l j, l = 1, 2, . . .m

wf2j−2,2l =
1

2

(
wcj,l + wcj,l+1

)
j = 1, 2, . . .m− 1; l − 1, 2 . . .m

wf2j,2l−1 =
1

2
(wcj,l + wcj+1,l) j = 1, 2 · · ·m; l = 1, 2 · · ·m− 1

wf2j−2l =
1

4

(
wcj,l + wcj,l+1 + wcj+1,l + wcj+1,l+1

)
j, l = 1, 2 . . .m− 1

wf = 0 at boundary . . . recall we’re dealing with residuals.

2

ALGORITHM V-CYCLE (One of many, the simplest and most popular)
The algorithm is shown schematically in Figure 41.

Start and end on finest grid. To start, stipulate inital guess vf = b (original
right-hand-side of system). Iterate Gauss-Seidel nr times.

Evaluate rf
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Figure 41: The V-Cycle algorithm

Restrict it to coarser grid

Perform nr Gauss-Seidel iterations

Evaluate rc

Restrict on even coarser grid

and repeat process till we reach coarsest grid, with just one single interior
point, which we can solve for exactly.

At this stage we’ve damped out the high frequencies of error, relative to each
grid resolution. ∴ damped influence of error components over entire range of
wave numbers supported by the finest grid, except for small error introduced
by restriction.

Now we go up all the way to the finest grid. At each step we Prolong,

Update residual on new grid,

and Perform no G-S iterations

to eliminate errors (corresponding to high oscillations for each grid resolution
) that might have been introduced by post prolongations.

We’re back to the starting point, completed the V -Cycle.
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Figure 42: An improved V-cycle algorithm

Now we check for convergence by measuring size of residual vector.

If residual below some specified tolerance, we quit. Otherwise, repeat V -
Cycle.

There is one problem with V -Cycle algorithm . . . it could be made faster if we
start with a really good initial guess. The “Full Multigrid” method usually
combines this with the pattern illustrated in Figure 42. See references for
full details.

2

V -Cycle Computational Cost for Poisson (5-point formula):

let γ be the cost of a single G-S iteration on finest grid. Note that a single
coarsening decreases operation count by 4 ∴ the cost of V -cycle is

(198)

(
1 +

1

4
+

1

42
+

1

43
· · ·
)

(nr + np)γ ≈
4

3
(nr + np)γ

where nr and np are the # of iterates in restriction and prolongation phases.
∴ V -cycle is linear in the # of grid points on finest grid.

Ex) For m = 63, using V -cycle with nr = np = 1 for residual ∼ 10−5 → 8thV -
cycle for same residual: using
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SOR → 243 iterations
G− S → 6526 iterations
Conjugate Gradient → 179

Note: Cost of restriction and prolongation is not included in (198)

2

0.8 APPENDIX

0.8.1 Computing a Matrix Exponential

Consider the matrix
eAt

here t is a scalar parameter, and A is an n× n matrix.

Lemma: For A and t as above, the eigenvalues of At are t times the eigen-
values of A.

Proof: let µ be the eigenvalue of A then we show that λ = µt is an eigenvalue
of At:
Since µ is an eigenvalue of A then det(A − µI) = 0. Hence det(At − µI) =
det(t(A− µI)) = tn det(A− µ5) = tn(0) = 0 2

Lemma:

eAt = It+ At+
1

2!
At2 + · · · =

∞∑

n=0

1

n!
Antn ← not generally useful

for any A. 2 Theorem: With A as above. Then

eAt = αn−1A
n−1tn−1 + αn−2A

n−2tn−2 + · · ·α2A
2t2 + α1At+ α0I

αi i = 0, 1, · · · , n−1 are functions of t which must be determined for each A.

Theorem: A as above. Then

r(λ) ≡ αn−1λ
n−1 + αn−2λ

n−2 + · · ·α2λ
2 + α1λ+ α0
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then if λi is an eigenvalue of At then eλi = r(λi)

furthermore if λi is eigenvalue of multiplicity k, k > 2 then the following
equations are true:

eλi =
d

dλ
r(λ)|λ=λi =

d2

dλ2
r(λ)|λ=λi = · · · = dk−1

dλk−1
r(λ)|λ=λi

Example Suppose A is 4 matrix, with eigenvalues 5 and 2, with multiplicity
k = 3 and k = 1, respectively. Then λ = 5t and λ = 2t are eigenvalues of At.

Here n = 4, thus

r(λ) = α3λ
3 + α2λ2 + α1λ+ α0

r′(λ) = 3α3λ
2 + 2α2λ+ α1

r′′(λ) = 6α3λ+ 2α2

Since λ = 5t is eigenvalue of multiplicity 3 ⇒ e5t = r(5t) = r′(5t) and
e5t = r′′(5t). Thus

(199) e5t = α3(5t)
3 + α2(5t)

2 + α1(5t) + α0

(200) e5t = 3α3(5t)
2 + 2α2(5t) + α1

(201) e5t = 6α3(5t) + 2α2

(202) also λ = 2t ⇒ e2t = α3(2t)
3 + α2(2t)

2 + α1(2t) = α0

Thus Equations (199)-(202) are 4 equations in 4 unknowns α0, α1, α2, α3

therefore eAt = α3A
3t3 + α2A

2t2 + α1At+ α0 I can be calculated. 2

Matrix Polynomials and the Cayley-Hamilton Theorem

Let A be an n × n matrix with constant entries denote λi and ui be the
associated eigenvalues and right eigenvectors, so that

(203) Aui = λiui i = 1, 2 . . . n
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here λi ∈ C is the ith eigenvalue ui is the ith eigenvector with components
(u1

i , u
2
i , u

3
i , · · ·uni )T .

Premultiply (203) by A

A2ui = λiAui = λi(λiui) = λ2
iui

In fact, premultiplying (203) by Am−1 shows that Am has eigenvalues λmi and
eigenvectors ui i.e.

Amui = λmi ui

Note: One can use a similar argument to show that AT has the same eigen-
values as those of A:

det(λI = AT ) = det(λI − AT )T = det(λI − A)

∴ the characteristic equation for A and AT are the same.

Let p(λ) = λr + p1λ
r−1 + p2λ

r−2 · · · pr−1λ+ pr

the au arbitrary polynomial of degree r. Hence, for the matrix A of size n×n

p(A) = Ar + p1A
r−1 · · · pr − 1A+ prI

where I is the identity matrix of size n× n. If ui are eigenvectors of A then

p(A)ui = Ar + u1 + p1A
r−1ui + · · · prui = p(λi)u

showing that the e’values and the e’vectors of p(A) ARE p(λi) and ui for
i− 1, 2 · · ·n.

Cayley-Hamilton Theorem: Every matrix satisfies its own characteristic equa-
tion, i.e.

k(A) = An + k1A
n−1 + k2A

n−2 · · · knI = 0

ex) A =

[
1 3
2 2

]
⇒ characteristic polynomial is λ2 − 3λ− 4 = 0

So k(A) = A2 − 3A− 4I ≡ 0

[
7 9
6 10

]
− 3

[
1 3
2 2

]
− 4

[
1 0
0 1

]
=

[
0 0
0 0

]
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Now, consider etA (A is constant entry n× n matrix): it satisfies

d

dt
etA = AetA

and
dk

dtk
etA = AketA k ≥ 0

In fact for every polynomial p

p

(
d

dt

)
etA = p(A)etA

the solution of p

(
d

dt

)
z = 0 is z =

∑n
j=1 cjzj(t)

where {cj}n1 are constant coefficients. Similarly

(204) etA =
n∑

j=1

Cjzj(t)

{Cj}n1 are constant matrices, derived by taking derivatives of (204) with
respect to t and evaluating them at t = 0. The kth derivatives of (204) is

(205) Ak =
n∑

j=1

Cjy
(k)
j (0).

If the independent solutions {yj}nj= are chosen to satisfy yk−1
j (0) = δjk

⇒ from (205) etA =
∑n

j=1A
j−1yj(t).

Moreover, if p has simple roots and the {yj}nj=1 are chosen to be

y
(t)
j = eλjt, λj the roots of p,

then (205) becomes the set of n equations

Ak =
n∑

j

= Cjλ
k
j k = 0, 1 . . . n− 1

which can be solved for {Cj}nj=1 which are spectal projections corresponding

to the e’values {λj}nj=1.

2
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