Auto-Tuning Using Fourier Coefficients

Math 56

Tom Whalen
May 20, 2013

The Fourier transform is an integral part of signal processing of any kind.
To be able to analyze an input signal as a superposition of infinitely many
signals of different frequency allows for manipulation of the coefficients and,
after completing the inverse Fourier transform, interesting effects on the initial
signal. Thus, in my project I focused on creating pitch correction effects as
seen in software Auto-Tune, and in this paper I will talk about the process of
creating a Matlab code that performs this effect.

The Fast Fourier Transform algorithm is effective at breaking down mathe-
matical functions into a Fourier series of different frequency complex exponen-
tials and the corresponding coefficients. However, when analyzing audio signals
it is impractical and inefficient to take one Fouier Transform of an entire audio
clip; for a band-limited signal, most of the 44100¢ Fourier coefficients will con-
tain no imformation about the original signal and there is no way to tell which
frequencies are dominant at different times in the signal. Thus, the way that
audio signals are most often processed is using something called the Short-Time
Fourier Transform (STFT). The basic idea of the STFT is that one can window
the actual signal multiple times and take the FFT of the resulting modified in-
put. The windowing process is done simply by multiplying the signal by another
function that is mostly zero and has a maximum of 1. This will kill off the signal
at other times that are not of interest and allow for getting the frequencies at a
certain point in time via the FFT.

There are several types of windowing functions that can be used in the STFT
process. The most commonly used set of windows are of the form

a—(1—a)cos (m) ,0<n<N
where « is a constant that determines the shape of the function and N is the
length of the windowed signal. The windowing function that I used most in my
analysis was the Hanning window, which is the above equation with a = .5.

Some other possible widowing functions are the Hamming window (o = .54)

3 s
N—-1

where 0 < n < N that are very similar in shape to the Hanning window but have

and the square function (o = 1). One can even form functions like cos

o.9- —

o.8 =

0.7 - ,

o.6 - —

0.5 —

0.4 — —

0.3 — -

o.2|- —

L L L L L L L L L
o 0.1 0.2 0.3 o.a o.5 0.6 0.7 o.8 0.9 1

Figure 1: The Hanning window: (1 —cos(2%%)),0<n < N

a more defined peak near N/2. Windows like the Hanning are much prefered to
the square window because the jumps in the square window cause the Fourier
coefficients to decay much more gradually than those obtained via one of the
smooth windows. However, when using the cosine-based window, it is necessary
to have a jump size between windows that enables full reconstruction of the
original signal. This reconstruction condition is

fiw(G —to) + fjw(lG—t1) +..=1

which means that each spectral frame will be weighted evenly. For the square,
the obvious choice for the jump size is IV, the number of samples in the windowed
signal, which will prevent any component of the signal from being processed
more than once. For the other windows, the jumpsize is N/4, but this will
cause the signal to be interpreted as having twice the actual value, hence a
scaling factor of 1/2 to recover the signal.

Now this brings us to the actual form of the STFT:

o0

fm,t = ZW(J - t)fjw_mj

=0

In practice the result of the running the ST-FFT algorithm is a matrix with each
row representing the Fourier coefficients of the signal at some point in time. The
final step in the STFT process is choosing a suitable value for N, the number
of samples of the signal included in each window. For a typical sampling rate
of 44.1 kHz, the most common N is 1024, which is large enough to ensure that
the Fourier coefficients will decay and there will be no aliasing effects. It is also
a small enough that the time resolution of the signal is decent, as there will be
roughly 43 spectral frames per second of signal. Here is a generic audio signal
and its STFT displayed as a colorscale image with time on the vertical axis and
the frequency on the horizontal.

To invert the STFT matrix, one must loop through all of the spectral frames
and essentially add up all of the resuting signals that are produced by each set

0.05 —

—0.05

Signal

—0.15

[e] 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time x 10%

Figure 2: The input signal

100
200
300
400
500
600
700
800

900

100 200 300 400 500 600 700 800 900 1000

Figure 3: Its STFT on a color-scale map

of coeflicients, which is commonly referred to as the overlap-add method of
reconstruction. Shifting by the jumpsize each iteration, multiplying the ISTFT
output by the window, and then adding it to the total output signal will perfectly
reconstruct a signal from its set of STEFT coeflicients.

The problem with the STFT is that, for any given spectral frame, it doesn’t
tell us the instantaneous frequencies due to the fact that there isn’t much en-
ergy resolution. The solution to this problem relies in the fact that a complex
coefficient a + ib can be written in the polar form Se® where 8 = Va2 + b2
and ¢ = tan~! g The ¢ term acts as a phase of the signal, due to the shift
of a particular frequency in the windowing process. Looking at the term in
the Fourier series for which the coefficient is a + ¢b, we can now write this as
Be'®e’™ = Be(®+) The new interpretation of this is that the new amplitude
of the wave is the magnitude of the original coefficient and the new frequency is
actually the old frequency shifted by the phase ¢. Thus, by converting to polar
coordinates we can keep track of actual values of the frequencies in an audio
signal rather than those determined by the length of the DFT matrix.

The implementation of the phase vocoder is illustrated by finding the change
in phase for a specified energy bin between successive spectral frames, as shown
in the following equations:

¢k, t) — ¢k, t)
At
Awwrapped(ky t) = [(Aw(k7 t) + 71')%271'] - T
Wnew (K, t) = Awyrapped(k,t) — w(k, t)

Aw(k,t) = —w(k,t)

Because the phases are wrapped from -7 to 7, we can’t simply calculate the new
frequency by finding the phase difference and adding it to the frequency denoted
by k. We have to instead find the phase difference, subtract the expected value,
make it positive and mod it with 27 and finally add it with the frequency value
of the bin to get the true frequency of the signal.

Now that we know exactly which frequencies we are dealing with, it is pos-
sible to directly manipulate the coefficients. Pitch correction is carried out by
first finding out the frequency values for the musical notes and making them
target bins for the signal coefficients. Once, this has been done the next step
is to find the dominant overtone of the input signal. Since pitch correction is
employed mainly for human singing, there will normally only be one tone that
dominates the spectrum of Fourier coefficients. It is also necessary to convert
the frequencies, which have now been processed by the phase vocoder, into Hertz
in order to correctly coorelate the target bins, which is given by the equation:

k(sampling rate)

wr(k) = where k is the bin number and ranges from 1 to the length of the window

~ length of window
Once this has been done, the next step is to loop through all of the spectral
frames, identifying the dominant tone in each one, and pushing each into the tar-
get bin of the nearest musical note. However, because Matlab’s implementation

of the FFT doesn’t allow for changing the actual frequencies that correspond to
the coeflicients, I had to effectively change the frequencies by altering the values
of the amplitudes. Since we want to rebin the dominant tone of the signal, we
want to go from frequency m to frequency m + ¢, where ¢ is some phase factor
that moves this frequency to the desired one. Now writing out the series term
as:

f;nei(m-i-q&) — f;neiqbeim

This tells us that we should multiply the Fourier coefficients by a factor e'®
that depends on the distance from the nearest desired frequency. This will shift
all the frequencies to output the pitch corrected signal that should, in theory,
produce a much more euphonic sound than the original clip.

There are a few restrictions, however. For a real-valued input like an audio

*

clip, we have the relation that f_,, = f, which means that the coeflicient
with the maximum amplitude will appear twice. Thus, we need only analyze
the coefficients fo to fn/2, which will give us the correct difference between
the actual frequency corresponding to the coefficient and the goal musical note.
Furthermore, there isn’t enough energy resolution to separate the lower frequen-
cies present in the signal. With a window size of 1024 and a sampling rate of
approximately 43 Hz, the information of the entire lowest musical octave, with
values below 43 Hz, is all contained in the first Fourier coefficient, so it is impos-
sible to resolve out which notes are dominant in the signal. Thus, it is best just
to avoid this difficulty and begin analyzing the dominant tones starting with
the second coefficient.

This all sounds easy enough in theory, but the actual implementation was a
bit more difficult. After a long amount of time put into making the code work,
I wasn’t able to get a functional auto-tune script up and running. Though the
computational aspect of this project was not completely fulfilled, the theory
behind pitch correction programs is very interesting creates a basis for other
neat effects to implemented on audio signals.

References

[1] Boulanger, Richard; Lazzarini, Victor. The Audio Programming Book. Mas-
sachusetts Institute of Technology, 2011.

