
Exploration in π Calculation Using Various

Methods Implemented in Python

Kunyi Li

May 30, 2013

1 Introduction

The mathematical constant π, found ubiquitously in many applications, has
been a subject of interest for mathematicians ever since the beginning of recorded
history. In order to seek out better understanding of its nature, calculation of
the its decimal digits has been a perennial favored activity of many mathemati-
cians throughout history. The length of digit of π capable of being obtained has
always been commensurate with the technological advance in mathematics at
the time. First, the ancients Egyptians and Hebrew su�ced with the estimate of
roughly 3 based on their intuition. Later, discoveries by Archimedes in Greece
and Liu Hui in China led to more precise estimation of π using calculations
based on regular polygons inscribed and circumscribed in a circle. However, it
was not until the discovery of the in�nite series that mathematicians began to
make major strides in the calculating the digits of π. As we enter the mod-
ern era, the advent of digital computers allows us to obtain precision of π of
astronomical proportions.

Even though it is said that 39 digits of π is su�cient to calculate the circum-
ference of the entire measurable universe accurate to the width of one hydrogen
atom,1 π calculation is still beloved by hobbyists and computer benchmarkers.
In this project, we will explore three π algorithms based on various types of
in�nite series and iterative techniques, in order to calculate π to as many dig-
its as possible while optimizing for speed of calculation. In addition, we will
make some observations about the distribution of digits in π using the results
we calculate.

2 Methods and Implementation

In this project, we will implement the following three methods: arctan or
Machin's Method, Chudnovsky's Algorithm and Brent-Salamin's Algorithm.
The �rst method is chosen for its historical signi�cance, since its most basic
version was used by its discoverer and contemporaries in the 18th century in

1Arndt, Jorg; Haenel, Christoph (2006). Pi Unleashed. (Berlin:Springer-Verlag), 17.

1

calculation by hand. Next, the Chudnovsky's Algorithm, quite similar in nature
to the algorithm �rst found by the legendary Ramanujan, has been a popular
method adopted by record breakers everywhere in the world in recent years.
Lastly, the Brent-Salamin Formula, which uses the arithmetic-geometric mean
to compute π, is known for its rapid convergence.

All of these methods are implemented in Python 2.7, with the help of two
packages of arbitrary precision mathematics, gmpy2 and mpmath. In the imple-
mentation of the �rst two methods, the result obtained is π multiplied by 10d

where d is the number of digits, hence giving us an integer value that begins
with 31415.... This is achieved by multiplying the appropriate initialization by
a factor of 10d. Theoretically this method can be implemented with Python's
native int type, which accepts computation of arbitrarily large integers. But
using gmpy2 's mpz number type, the exact same algorithm can be calculated
much faster.2 In addition, mpmath is used in the implementation of Brent-
Salamin's Formula, which returns the decimal value 3.1415... of π using its mpf
number type that allows decimals of arbitrary precision. Lastly, Python's built
time module is used to measure the run-time of each algorithm.

In the following subsections I will describe each method and their respective
implementation. For details please see the actual code.

2.1 Machin-like Formulae

First discovered by English mathematician John Machin in 1706, its original
form appeared as the following:3

π

4
= arctan(1) = 4 arctan

1

5
− arctan

1

239

The derivation of this formula relies on the following property of the arctan
function:

arctan(x) + arctan(y) = arctan(
x+ y

1− xy
)

There are many of such Machin-like formula with up to 6 di�erent arctan terms
that allows for faster rate of convergence. In this project we will implement one
additional Machin-like formula for comparison, with credit due to Gauss and
Euler:

π

4
= 12 arctan

1

18
+ 8 arctan

1

57
− 5 arctan

1

239

To actually compute digits of π, these formulae are used in conjunction with
the Taylor series expansion for arctan, here written as arctan(1/x):

arctan
1

x
=

1

x
− 1

3x3
+

1

5x5
− 1

7x7
+ ...

2According to gmpy2 's documentation. The mpz type becomes signi�cantly better in
performance than the built-in int/long type when an integer exceeds �as low as 20 to 40
digits�. https://gmpy2.readthedocs.org/en/latest/overview.html

3Wolfram MathWorld, Machin-Like Formulas, http://mathworld.wolfram.com/Machin-
LikeFormulas.html

2

According to the result, to obtain π accurate to n digits with the original
Machin's formula, whose term evaluated farthest from the origin is 1

5 , it re-
quires ∼ 1.4n number of terms. However, we can half the number of terms with
this modi�ed version of the arctan series discovered by Euler:4

arctan
1

x
=

x

1 + x2
+

2

3

x

(1 + x2)2
+

2 · 4
3 · 5

x

(1 + x2)3
+

2 · 4 · 6
3 · 5 · 7

x

(1 + x2)4
+ ...

As mentioned brie�y above, to obtain π as an integer raised to 10d where d
is the number of desired digits, the �rst term is initialized as (x · 10d)/(1+x2) .
The terms that follow are derived using Python's built-in �oor division operator
// such that yn+1 = yn//f=byn/fc, where f is the appropriate factor to be
divided. Then, the calculation of the arctan series breaks when yn < f such
that yn+1 = 0. This method of calculation allows us to avoid the rounding
problem with �oating decimals and take advantage of Python's built int type
or gmpy2 's optimized alternative mpz.

2.2 Chudnovsky/Ramanujan's Algorithm

Chudnovsky's algorithm, discovered by the Chudnovsky brothers in 1989, ap-
pears in the following form:

1

π
= 12

∞∑
k=0

(−1)k(6k)!(13591409 + 545140134k)

(3k)!(k!)36403203k+3/2

In practice, each additional term of this algorithm provides approximately 14
additional digits of π. To implement this algorithm, we manipulate the above
expression to compute two series a and b and use them in a �nal equation that
gives the value of π. The initialization and �nal formula appears as following:

ak =
(−1)k(6k)!

(3k)!(k!)36403203k

ak
ak−1

= −24(6k − 5)(2k − 1)(6k − 1)

k36403203

bk = k · ak

π =
426880

√
10005

13591409a+ 545140134b

Similar to the above method, the �rst term of a and b are initialized as 10d so
that we can perform the calculation using Python's int and gmpy2 's mpz, and
subsequent terms are derived using �oor division. Meanwhile, b is calculating
by summing each term of a multiplied by the index.

Furthermore, binary splitting is a technique commonly used for this type of
calculation that can dramatically speed up the time of calculation. Division,

4WolframMathWorld, Inverse Tangent, http://mathworld.wolfram.com/InverseTangent.html

3

which is known to be a costly operation, is minimized in the binary splitting
method, which allows series of the type S(a, b) =

∑b
n=a

pn

qn
to be calculated as

S(a, b) = P (a,b)
Q(a,b) . Compared to the naive implementation, which computes b− a

separate divisions, binary splitting only performs one division in the end.5 For
the adaptation of this method please see the code implemented in Python 3.0
authored by Craig Wood.6

2.3 Brent-Salamin's Formula / Arithmetic-Geometric Mean
Method

Based on the work of Gauss and Legendre in the 18th century, this formula com-
putes π by repeatedly replacing two numbers by their arithmetic and geometric
mean, returning in the two numbers converging to their arithmetic-geometric
mean. This algorithm converges quadratically and takes around 3.5 terms to
multiply the number of digits by 10.7 The version adopted for this project calcu-
lates π using the following equation, where M(a, b) is the converged arithmetic-
geometric mean of the two initial values a0 = 1 and b0 = 1√

2
, and an+1 is the

arithmetic mean of an and bn and bn+1 is the geometric mean of an and bn :

π =
4 ·M2(1, 1√

2
)

1−
∑∞

n=1 2
n+1(a2n − b2n)

an+1 =
an + bn

2

bn+1 =
√
anbn

The implementation of this method in Python is rather straightforward.
First the code sets up the initial values and then enters a loop that calculates
the two means and the series on the bottom of the fraction then swaps a and b
with their respective means. The loop breaks when the di�erence between a and
b falls below a threshold (i.e. have converged in terms of this given threshold).
This threshold is calculated by 1

10d
where d is the number of digits of π desired.

Since the previous fraction diminishes rapidly and goes below Python's built-in
�oat point precision when we want d > 16, the package mpmath is used to
accommodate �oat point decimal of very high precision.

5Haible, Bruno; Papanikolaou, Thomas. Fast Multiprecision Evaluation of Series of Ratio-
nal Numbers, 4 http://www.ginac.de/CLN/binsplit.pdf

6http://www.craig-wood.com/nick/pub/pymath/pi_chudnovsky_bs_gmpy.py
7Gourdon, Xavier; Sebah, Pascal, π and Its Computation Through the Ages,

http://numbers.computation.free.fr/Constants/Pi/piCompute.html

4

3 Results and Analysis

3.1 Performance

In my test run, all the algorithms and their various implementations were clocked
for di�erent levels of precision. First the two Machin-like formulae, implemented
in both Python's int type and gmpy2 's mpz type, were timed for 10d digits for
d up to 6 or 1 million digits of π. For Chudnovsky's algorithm, the limit for
number of digits was raised to 10 million for the regular version and 100 million
for the binary splitting version. Finally, Brent-Salamin's Formula were limited
to 100 million digits.

For this project, all the code was created and ran on my laptop with Intel
Core i7 2.40Ghz Quad-core CPU and 8GB DDR3 RAM running Python 2.7
64bit on Windows 8 Home Premium. Note the code did not optimize for parallel
processing hence only one of the cores of the i7 processor was used in the process.
During most calculations CPU usage hovered around 20%, which is presumably
the maximum utilization by Python on my machine for non-parallel code.

Digits Machin_Int Machin Mpz GaussEuler_Int GaussEuler_Mpz

100 0.001 0.001
1K 0.002 0.000999928 0.002000093 0.000999928
10K 0.09800005 0.029000044 0.093999863 0.028000116
100K 8.888939 1.5989 8.696000099 1.569000006
1Mil 977.109 159.789 976.3409998 156.1230001

Table 1: Time (s) to Calculate π Using Machin-like Formulae

In the results for Machin-like formulae we note two key observations. First,
the Gauss-Euler variation, which supposedly converges faster with one extra
term, did perform better than Machin's variation but only by a negligible
amount. Second, the major di�erence in performance is between the di�er-
ent data-type used, where mpz type took only 1

6 the amount of time than its
int counterpart using the exact same algorithm. However, it appears that to
increase the number of digits by ten-fold the amount of time required multiplies
by ∼ 100. At this rate 10 million digits would require more than 4 hours.

Digits Chudnovksy Chudnovsky_BS AGM

10K 0.004999876 0.001999855 0.004999876
100K 0.252000093 0.041000128 0.181999922
1Mil 26.81000018 0.666000128 2.855000019
10Mil 6020.742 10.91400003 44.75099993
100Mil 160.141 706.2420001

Table 2: Time (s) to Calculate π Using Chudnovsky and Brent-Salamin

From a glance, Chudnovsky and Brent-Salamin's algorithm are far superior
at calculating π, at least in this implementation. Here the astounding thing to

5

notice is that even though the vanilla Chudnovsky implementation reached 1
million digits in only 1

6 the amount of time the Machin-like formula took, the
binary splitting technique took only 1

40 the time of the former! In the amount
of time the Machin-mpz method reached 1 million digits, it has calculated 100
million digits. On the other hand, Brent-Salamin's method did not disappoint,
performing ∼ 20 times better than the vanilla Chudnovsky and only 4 times
slower than binary splitting Chudnovsky.

Figure 1: Time (in log10 scale) to Calculate π Using Various method

3.2 Distribution of Digits In π of Various Precision

Using results obtained from some of the calculations, the π variable was passed
into a string and then the count function was used to obtain the frequency of
each digit in the variable. The result was then divided by the precision to obtain
the percent distribution. In the results displayed in Table-3 on the next page,
we can observe that the distribution of the digits of π is quite gives each digit
from 0 to 9 almost the same amount of frequency, with the standard deviation
from the mean of 0.1 decreasing as we move up to higher precision and hence
the digits becoming more evenly distributed.

6

Digit 100K 1Mil 10Mil

0 0.099319007 0.1000909 0.10006429
1 0.099699003 0.0997329 0.09998999
2 0.100928991 0.0998799 0.10002779
3 0.101408986 0.1001069 0.10004179
4 0.098079019 0.0995399 0.10000259
5 0.099949001 0.0996159 0.09996959
6 0.099809002 0.1002089 0.09995539
7 0.099749003 0.1001799 0.10007159
8 0.100858991 0.1002969 0.09995269
9 0.100198998 0.1003479 0.09992429

Mean 0.1 0.1 0.1
Std.Dev 0.000892879 0.000273837 4.77169E-05

Table 3: Percent Frequency of Each Digit from 0 to 9 in π of Various Precision

To a�rm that the digits of π are normally distributed, a χ-square test was
performed on the data for each precision, with expected value for each digit
equal 1

10 · d where d is the number of digits. The χ(p) value for 100K, 1Mil
and 10Mil digits are, 0.5369, 0.5853, 0.9863, respectively. Since the values are
much higher than any commonly used statistical threshold (0.05 or 0.01), we
can conclude that the digits of π are normally distributed for these precisions.
Although it has not be proven π is normal,8 our experimental result and those
of others seem to suggest it is.

4 Potential for Future Studies

Although the above algorithms for π calculation seem to have performed satis-
factorily for this project's purposes, I believe it is possible to enhance the per-
formance of speci�c algorithms even further with other techniques. First, the
implementation in Python is quite limited since it does not include any attempt
to optimize memory usage. Presumably, by using a lower level language we can
speed up the calculation time. In addition, the implementation of this project
only used about ∼ 20% of CPU at peak performance. To use up more CPU,
multicore parallel processing must be used. for both Chudnovsky and Machin,
we can split the series into n parts where n is the number of parallel processes
that can be supported. Then we can evaluate the series at n di�erent inter-
vals simultaneously, e�ective cutting down the obtaining terms and summing
them part of the calculation to 1/n the amount of time the serially processed
code takes. We can observe the e�ect of the aforementioned optimization by
using the free software y-cruncher,9 which contains a multicore implementation
of Chudnovsky's algorithm (assuming binary splitting) in C++. In my run of

8Stan Wagon, Is π normal?, Friends of Pi, http://pi314.at/math/normal.html. [Original
Source: The Math. Intell. 7, 65, (1985)]

9http://www.numberworld.org/y-cruncher/

7

y-cruncher to 100 million digits, it only took 24 seconds to get the result, which
is 1

6 the amount of time of my best result.
Furthermore, we can enhance the speed of calculation by using the GPU

instead of CPU. The current world record for digits of π, as recent as March
15th, 2013 sits at 8× 1015 digits, was accomplished using a few NVIDIA GPUs
in parallel and took about 90 days.10 This a potential �eld that is left to be
explored.

10http://www.engadget.com/2013/03/15/researcher-breaks-pi-record-with-nvidia/

8

